3. Статистичні розподіли та чисельні характеристики вибірки

Значення чисельної ознаки, які спостерігаються в деякій конкретній вибірці, називають варіантами. Послідовність таких варіант у зростаючому порядку – варіаційним рядом. Якщо у вибірці об’єму n варіанта  зустрічається  разів, то число

(3.1)

називають відносною частотою варіанти, а  – частотою варіанти.

Від вибірки до вибірки об’єму n частоти  та відносні частоти  змінюються. Це означає, вони є значеннями випадкових величин  та , відповідно. В подальшому все що стосується конкретної вибірки буде позначатися малими буквами латинського та грецького алфавітів, а все що стосується вибірки взагалі – відповідними великими буквами.

Перелік варіант та відповідних до них частот (або відносних частот) називають статистичним розподілом вибірки. Статистичний розподіл, як правило, задається у вигляді таблиці. Ломана крива, яка з’єднує точки з координатами (xi, ni), або (xi, wi) у прямокутній системі координат називається полігоном частот.

Приклад 3.1. Для конкретної вибірки одержали статистичний розподіл відносних частот

.

Його гістограма має вигляд



Статистичний розподіл вибірки можна також представити у вигляді послідовності інтервалів та відповідних до них частот, що особливо зручно, коли ознакою є неперервна величина. Інтервал з варіантами розбивають на декілька часткових інтервалів довжиною  і знаходять для кожного з них суму частот варіант, які потрапили в інтервал. Якщо всі інтервали рівні (), то відповідні варіанти називають рівновіддаленими, а їх чисельні значення визначаються серединами відрізків. Якщо частота первинної варіанти знаходиться на границі двох інтервалів, то її частота рівномірно розподіляється між ними. Графічно статистичний розподіл з послідовністю інтервалів задається гістограмою частот (відноснихчастот). Для побудови гістограми частот (або відносних частот), необхідно на вісі абсцис відкласти часткові інтервали і побудувати на них як основах прямокутники висотою  . Величини  називають густиною частоти, а величини - густиною відносної частоти. Загальна площа гістограми дорівнює сумі всіх частот, тобто об’єму вибірки n, а площа гістограми відносних частот дорівнює одиниці.

Приклад 3.2. Для конкретної вибірки об'єму одержали розподіл частот по частковим інтервалам

Частковий інтервал довжиною

Сума частот варіант часткового інтервалу

Густина частоти

5-10

10-15

15-20

20-25

25-30

30-35

35-40

4

6

16

36

24

10

4

0.8

1.2

3.2

7.2

4.8

2.0

0.8

Полігон частот такого розподілу має такий вигляд


Емпіричною інтегральною функцією вибірки називають функцію

,(3.2)

 – кількість варіант менших ніж x (дискретна випадкова аеличина).

На відміну від емпіричної інтегральної функції розподілу вибірки, інтегральну функцію розподілу генеральної сукупності називають теоретичною інтегральною функцією розподілу. З теореми Бернуллі слідує, що відносна частота події  тобто  по ймовірності прямує до ймовірності  цієї події. Це означає, що емпірична функція вибірки по ймовірності прямує до теоретичної функції розподілу генеральної сукупності. Тому емпірична функція розподілу вибірки є оцінкою теоретичної функції генеральної сукупності.

Із означення емпіричної функції слідують такі її властивості:


Информация о работе «Математична статистика»
Раздел: Математика
Количество знаков с пробелами: 31115
Количество таблиц: 4
Количество изображений: 3

Похожие работы

Скачать
28330
5
1

... ія розподілення експоненціального закону: , а імовірність попадання у інтервал (a,b) безперервної випадкової величини Х, розподіленою за експоненціальним законом дорівнює: . 2. Види типових задач з математичної статистики   Тип 1 Ланка дослідів дала певну послідовність результатів. Вирахувати середнє значення виміряння, дисперсію, похибки, а також встановити закони розподілення ...

Скачать
18248
0
0

... необхідності допускається застосування байєсівських процедур. Байєсівський підхід стає все більш популярним в області фармакокінетики. Можна сказати, що клінічні дослідження мають ще тривалішу історію, ніж математична статистика. Клінічні дослідження в тому розумінні, що ми звикли вкладати в це поняття, в основному одержали розвиток після другої світової війни, хоча відомі і більш ранні приклади. ...

Скачать
8154
5
0

... ідому р і. Знайти функцію розподілу випадкової величини F(Х) та побудувати її графік. Обчислити математичне сподівання М(Х), дисперсію D(Х) та середнє квадратичне відхилення випадкової величини Х. Х 11 13 15 19 Р 0,18 0,32 0,4 ?   Розв’язання Згідно з умовою нормування розподілу ймовірностей випадкової величини Звідси знаходимо : Функцію розподілу знаходимо на основі ...

Скачать
33448
3
0

... яким чином досягти певного рівня обслуговування (максимального скорочення черги або втрат вимог) при мінімальних витратах, пов'язаних з простоєм обслуговуючих устроїв. математичне моделювання економічний аналіз 2.  Прийоми економічного аналізу на базі математичної статистики Застосування методів моделювання в аналітичному дослідженні господарської діяльності підприємств та їхніх структурних ...

0 комментариев


Наверх