ЗУБЧАТЫЕ ПЕРЕДАЧИ
1. Условия работоспособности зубьев
Меньшее из пары зубчатых колес называется шестерней (z1), большее – колесом (z2). Параметры, относящиеся к шестерне, обозначают с индексом «1», к колесу – с индексом «2». Термин «зубчатое колесо» относят как к шестерне, так и к колесу.
На рис. 1 изображены направления наклонов линий зубьев и их названия: а) прямые зубья; б) правый наклон; в) левый наклон; г) шевронный наклон.
Рис.1
|
|
|
|
Рис. 2
При передаче вращающего момента Т в зацеплении (рис. 2) действует нормальная сила Fn = 2000 Т // db_(db = dwcosαtw – диаметр основной окружности, где dw – диаметр начальной окружности; α tw – угол зацепления), направленная по линии зацепления N1N2.
По отношению к зубу колеса сила Fn2 активна, т.е. движущая, и направлена в сторону вращения z2, по отношению к зубу z1 сила Fn1 реактивна (сила сопротивления колеса) и направлена против вращения шестерни. По закону Ньютона Fn1 = Fn2 = Fn.
Деформацию зубьев под действием силы Fn рассматривают как сжатие двух цилиндров в плоскости зацепления – задача Герца с первоначальным контактом по линии.
Кроме того, относительно заделки ножки зуба сила Fn действует на некотором плече, что вызывает изгибающий момент в основании зуба.
За счет скольжения поверхностей зубьев между ними возникает сила трения Ff = fFn, где f – коэффициент трения скольжения.
Зуб испытывает сложное напряженное состояние. Решающее влияние на его работоспособность оказывают два основных напряжения: контактное σН и изгиба σF (“F” - Foot – ножка). Эти напряжения – переменные, изменяются по отнулевому циклу и приводят к усталостному разрушению зубьев. Число циклов изменения напряжений σН и σF за один оборот равно с, где с – число зацеплений фиксированного зуба за один оборот.
Суммарное число циклов изменения напряжений за весь срок службы
NΣ = 60nсLh, где Lh – ресурс в часах.
2. Материалы зубчатых передач
Важнейшими критериями при выборе материалов являются масса и габариты передачи. Наименьшую массу имеют стальные зубчатые колеса. Причем, масса и габариты тем меньше, чем выше твердость поверхности зубьев.
Границей качественных свойств зубьев является твердость поверхности Н0, равная 350 НВ:
1. При Н0 ≤ 350 НВ зубья подвергают улучшению или нормализации до нарезания зубьев. Применяют в единичном и мелкосерийном производствах при отсутствии жестких требований к габаритам и массе передачи (например, стационарные машины и механизмы). Зубья из улучшенных сталей хорошо прирабатываются, не подвержены хрупкому разрушению, но имеют ограниченную нагрузочную способность.
2. Высокую твердость Н0 > 350 НВ (45…63 HRC) получают применением поверхностного термического или химико-термического упрочнения предварительно улучшенных зубчатых колес: поверхностной закалки (чаще ТВЧ – токами высокой частоты), цементации и нитроцементации с закалкой, азотирования. Упрочнение проводят после нарезания зубьев, а после него – шлифование или полирование зубьев.
Применяют в массовом и крупносерийном производствах или в любом при наличии жестких требований к габаритам и массе (например, в передачах транспортных машин).
Зубья с твердостью Н0 ≥ 56 HRC называют высокотвердыми.
Твердые зубья (Н0 > 45 HRC) плохо прирабатываются.
Для обеспечения одинаковой долговечности материал шестерни z1 должен иметь более высокие механические свойства, чем колеса z2, так как при σН – const зубья z1 в “и” – раз чаще входят в зацепление (N1 > N2), что приводит к их большей усталости.
Практикой рекомендуются соотношения твердостей:
а) для прямозубых передач Н01 – Н02 ≥ (20…30) НВ;
б) для передач косозубых, шевронных, с круговым зубом с целью повышения прирабатываемости и нагрузочной способности Н01 – Н02 ≥ (100…150) НВ;
в) для твердых передач (Н0 ≥ 45 HRC) Н01 ≈ Н02 .
3. Характерные виды разрушения зубьев
Выход зубьев из строя может вызываться:
а) многократно повторяющимися переменными напряжениями σН и σF, приводящими к усталостным разрушениям;
б) чрезмерными единичными перегрузками, вызывающими пластические деформации или хрупкие поломки зубьев.
... Направление линии зуба правое. Вращение против часовой стрелки. при bm=35° при bm=35° Направление линии зуба левое. Вращение по часовой стрелке. 7. РАСЧЁТ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ 7.1 Выбор материалов червяка и червячного колеса Для изготовления червяков применяют углеродистые и легированные стали (см. табл. 3.1). Выбор марки стали зависит от назначаемой термообработки ...
... …….…………………………………………………………..7 5. Последовательность проектного расчета закрытых конических прямозубых передач……………………………………………………….20 6. Последовательность проектного расчета червячных передач...……..24 Библиографический список……………………………………………….31 1. Цель и задачи курсового проектирования Курсовое проектирование является заключительным этапом в изучении общеинженерных курсов «Прикладная ...
... посадок отдельных деталей. В местах посадки подшипников при вращении внутреннего кольца рекомендуют поля допусков для вала n6, m6, k6. Свободные размеры принимают по 14 квалитету. 3.2 Кинематическая схема мотор-редуктора и силы, действующие в зацеплениях зубчатых колес. Кинематическая схема трехступенчатого мотор - редуктора включает в себя червячную, коническую и цилиндрическую прямозубые ...
... валы червячного редуктора (рис.7): Рис.7 Схема усилий, действующих на валы червячного редуктора Определяем консольную нагрузку на муфте [1,табл.6.2]: ; (10.1) Н Для определения консольной нагрузки на шкиве необходимо произвести расчет зубчато-ременной передачи.[1]. Определяем минимальный диаметр ведущего шкива по диаметру ...
0 комментариев