1. Усталостное выкрашивание рабочих поверхностей зубьев

Причина – контактные напряжения σН и трение. Это основной вид разрушения закрытых передач (редукторов). Зубья в работе разделены слоем масла, износ их мал. Передача длительное время работает до появления на поверхности микротрещин из-за микронеровностей или других дефектов. Масло под давлением запрессовывается в трещины и способствует выкрашиванию (вырову) частиц металла.

 
 

Рис.3

Разрушение начинается вблизи полюсной линии 1 (рис. 3, а), где имеют место наибольшие нагрузка Fn (зона однопарного зацепления) и сила трения Ff. Поверхность зуба покрывается «раковинами», «оспинами» 2. Глубина раковин около 0,2 мм. В мягких передачах (Н0 < 350 НВ) в результате приработки наблюдается ограниченное (начальное) выкрашивание. В твердых передачах (Н0 > 350 НВ) – выкрашивание прогрессирующее.

2. Заедание зубьев наблюдается в высоконагруженных и высокоскоростных зубчатых, а также червячных передачах.

В местах контакта из-за трения развивается высокая температура, способствующая снижению вязкости масла, разрыву масляной пленки и образованию металлического контакта зубьев. Происходит молекулярное сцепление (микросварка) частиц металла. Растет сопротивление вращению, наросты металла на зубьях задирают рабочие поверхности сопряженных зубьев.

3. Поломка зубьев. Причина – напряжение изгиба σF. Это основной вид разрушения высокотвердых (Н0 ≥ 56 HRC) и открытых передач.

В открытых передачах в результате плохой смазки и абразивного истирания поверхностей зубьев от грязи выкрашивание не успевает развиться, но уменьшаются размеры сечений зубьев, растут напряжения изгиба σF. Возрастают зазоры, удары, шум. Усталостная поломка в этом случае связана с развитием трещин 3 на растянутой стороне ножки зуба (рис.3, б). В высокотвердых передачах зубья хрупкие, поверхность их имеет хорошее сопротивление выкрашиванию, но хуже противостоит прогрессирующему трещинообразованию в основании зуба.

Смятие рабочих поверхностей (пластические сдвиги) или хрупкое разрушение (Н0 ≥ 56 HRC) зубьев при кратковременных значительных перегрузках или ударном приложении нагрузки.

5. Отслаивание твердого поверхностного слоя при значительных контактных напряжениях и зарождении усталостных трещин в глубине под упрочненным слоем.


4. Расчетная нагрузка

1. Коэффициенты расчетной нагрузки

В теоретических передачах определяется номинальная нагрузка:

Рnom; Tnom = 9550

Рnom / n; Fnom = 2000Tnom / d.

При работе в зубчатом зацеплении возникают дополнительные нагрузки, вызываемые условиями нагружения, погрешностями изготовления, деформациями зубьев, валов и опор.

В расчетах это учитывают введением коэффициента нагрузки K, определяя расчетную нагрузку: Q = KQnom, где Q – любой вид нагрузки;

K = KAKβKVKα;

здесь KA, коэффициент внешней динамической нагрузки, учитывает влияние неравномерности нагружения двигателя и рабочего органа при их совместной работе с передачей;

Kβ – коэффициент неравномерности распределения нагрузки по длине контактных линий. Отклонение положения контактных линий обусловлено

погрешностями изготовления передачи, упругими деформациями зубьев, валов, опор, зазорами в подшипниках;

KV – коэффициент внутренней динамической нагрузки. Внутренняя динамическая нагрузка связана с ударами зубьев на входе в зацепление вследствие ошибок изготовления шага и деформации зубьев.

Kα – коэффициент распределения нагрузки между парами зубьев. Неравномерность распределения нагрузки между зубьями зависит от погрешностей изготовления, в результате чего при контакте одной пары зубьев в другой паре возможен зазор. При деформировании зубьев зазор может быть выбран, но при этом неравномерность распределения нагрузки неизбежна.

Рис.4

Цилиндрические зубчатые передачи специально не регулируют. Для перекрытия возможных осевых погрешностей расположения z1 и z2 при монтаже передачи шестерню z1 (рис. 4) выполняют шире колеса (b1 > b2) по двум причинам:

1. Для равномерного износа ширины колеса b2, так как твердость Н01 > Н02;

2. Расход металла на изготовление передачи меньше, так как объем шестерни V1 меньше, чем колеса V2.

Ширина b1 = b2 + (3…5) мм. Рабочая ширина зубчатого венца bW = b2.

Подробности о коэффициентах расчетной нагрузки см. в [1…3].

2. Точность зубчатых передач

28

 
Допуски на погрешности изготовления зубчатых колес и монтажа передач регламентированы стандартами: ГОСТ 1643-81 – передачи цилиндрические; ГОСТ 1758-81 – передачи конические; ГОСТ 3675-81 – передачи червячные.

Предусмотрено 12 степеней точности. Наиболее часто применяют 6-ю (высокоточные передачи), 7-ю (нормальная точность – передачи с повышенными скоростями), 8-ю (пониженная точность) степени.

Для каждой степени точности установлены три нормы:

– кинематической точности (регламентирует разность между действительным и номинальным углами поворота ведомого зубчатого колеса передачи);

– плавности работы (регламентирует колебания скорости вращения);

– контакта зубьев (регламентирует пятно прилегания поверхностей зубьев в собранной передаче).

Независимо от степеней точности стандартизирован боковой зазор зубчатой передачи. Боковой зазор необходим для предотвращения заклинивания зубьев вследствие их расширения от нагрева при работе, для размещения смазки и обеспечения свободного вращения колес. Обозначение: Н, Е, D, С, В, А

(Н – нулевой зазор…, В – нормальный, А – широкий). Чаще всего применяют сопряжения В и С (уменьшенный зазор в реверсивных передачах).

Примеры обозначения степеней точности передач редукторов в документации:

8-7-7-С ГОСТ 1643-81 – допуски цилиндрической передачи: кинематической точности по 8-й степени, плавности работы и контакта зубьев по 7-й степени точности, боковой зазор С;

7-В ГОСТ 1758-81 – допуски конической передачи: все нормы по 7-й степени точности, боковой зазор В.



Информация о работе «Зубчатые и червячные передачи»
Раздел: Промышленность, производство
Количество знаков с пробелами: 38534
Количество таблиц: 11
Количество изображений: 15

Похожие работы

Скачать
52417
34
1

... Направление линии зуба правое. Вращение против часовой стрелки.  при bm=35°  при bm=35° Направление линии зуба левое. Вращение по часовой стрелке. 7. РАСЧЁТ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ 7.1 Выбор материалов червяка и червячного колеса Для изготовления червяков применяют углеродистые и легированные стали (см. табл. 3.1). Выбор марки стали зависит от назначаемой термообработки ...

Скачать
8554
3
1

... …….…………………………………………………………..7 5. Последовательность проектного расчета закрытых конических прямозубых передач……………………………………………………….20 6. Последовательность проектного расчета червячных передач...……..24 Библиографический список……………………………………………….31 1. Цель и задачи курсового проектирования Курсовое проектирование является заключительным этапом в изучении общеинженерных курсов «Прикладная ...

Скачать
21933
5
1

... посадок отдельных деталей. В местах посадки подшипников при вращении внутреннего кольца рекомендуют поля допусков для вала n6, m6, k6. Свободные размеры принимают по 14 квалитету. 3.2 Кинематическая схема мотор-редуктора и силы, действующие в зацеплениях зубчатых колес. Кинематическая схема трехступенчатого мотор - редуктора включает в себя червячную, коническую и цилиндрическую прямозубые ...

Скачать
28691
5
17

... валы червячного редуктора (рис.7): Рис.7 Схема усилий, действующих на валы червячного редуктора Определяем консольную нагрузку на муфте [1,табл.6.2]: ; (10.1) Н Для определения консольной нагрузки на шкиве необходимо произвести расчет зубчато-ременной передачи.[1]. Определяем минимальный диаметр ведущего шкива по диаметру ...

0 комментариев


Наверх