Федеральное агентство по образованию

Пензенский государственный педагогический университет им. В.Г. Белинского

КУРСОВАЯ РАБОТА

Химическая термодинамика

Выполнила студентка группы Х-41(2):

Кямякова Галия Ибрагимовна

Пенза 2008 г.


Содержание

Введение

Глава 1. Первый закон термодинамики

1.1 Вопросы и задания

1.2 Примеры

1.3 Задачи

Глава 2. Приложение первого закона термодинамики к химии. Термохимия

2.1 Вопросы и задания

2.2 Примеры

2.3 Задачи

Глава 3. Второй закон термодинамики. Энтропия

3.1 Вопросы и задания

3.2 Примеры

3.3 Задачи

Глава 4. Термодинамические потенциалы

4.1 Примеры

4.2 Задачи

Литература


Введение

Физическая химия – наука, которая изучает общие закономерности физических процессов и является теоретической основой всей химической науки и технологии химических производств. Наиболее важным и в то же время одним из самых сложных разделов физической химии является химическая термодинамика. В данной курсовой работе приведен перечень вопросов и задач по химической термодинамике. Эти задачи носят комплексный характер и позволяют ученикам подготовиться к химическим олимпиадам. Целью настоящей работы явился подбор заданий по химической термодинамике, адаптация их к требованиям химических олимпиад для школьников, а так же разработка методики их решения с учетом межпредметных связей с математикой и физикой.

Решение задач дает возможность применить теоретические знания на практике, расширить, углубить и систематизировать их, стимулируют мыслительную деятельность учеников, развивают последовательность в действиях, логику.


Глава 1. Первый закон термодинамики

 

1.1  Вопросы и упражнения

1)         Что такое термодинамика и какие явления она изучает?

2)         Приведите несколько формулировок первого закона термодинамики и покажите, что они не противоречат друг другу. Почему первый закон термодинамики называют первым началом?

3)         Что такое система? Какие ее виды различают?

4)         Дайте определение и приведите примеры термодинамических процессов: изотермического, изобарического, изохорического и адиабатического.

5)         Что такое внутренняя энергия системы и из чего она слагается?

6)         Дайте определение идеального газа. Что собой представляет внутренняя энергия идеального газа?

7)         Почему термодинамика рассматривает не абсолютное значение внутренней энергии, а только ее изменение?

8)         Что такое энтальпия и какова ее связь с внутренней энергией? Почему для конденсированных систем разница между энтальпией и внутренней энергией мала, а для систем газообразных значительна?

9)         Перечислите способы передачи энергии от одной системы к другой.

10)      Что такое теплота и работа?

11)      Дайте определение теплоемкости удельной, атомной, молярной (мольной)? Какая связь существует между мольными теплоемкостями при постоянном давлении и постоянном объеме?

12)      Работа определяется двумя величинами: фактором интенсивности и фактором емкости (экстенсивности). Что будут представлять собой эти факторы при совершении механической работы, электрической и работы по расширению газов?

13)      Что такое максимальная работа расширения идеального газа? Почему газ, расширяясь в вакууме, работы не совершает?

14)      Напишите уравнения, выражающие максимальную работу расширения идеального газа при изотермическом, изобарическом, изохорическом и адиабатическом процессах.

15)      Дайте определение обратимым и необратимым термодинамическим процессам. Приведите примеры. Можно ли реальные природные процессы считать полностью обратимыми?

1.2 Примеры

Пример 1-1

Газ расширяясь от 10 до 16 л при постоянном давлении 101,3*103 н/м2, поглощает 126 Дж теплоты. Определите изменение внутренней энергии газа.

Решение:

 

p1 = p2 = 101,3*103 Па, V1 = 10 л = 1*10-2 м3 ,

V2 =16 л = 16*10-3 м3,

Qp = 126 Дж.

Согласно первому закону термодинамики

DU = Qp – W.

Работа, совершенная газом при изобарическом расширении, может быть вычислена по уравнению

W= p (V2–V1);

Отсюда

DU = Qp - p (V2–V1);

DU = 126 - 101,3*103 (1* 10-2 – 16*10-3) = 481,8Дж

Ответ: 481,8Дж

Пример 1-2

Рассчитайте работу изотермического (27°С) расширения 1 моль углекислого газа от 2,24 до 22,4 л.

Решение:

 

n = 1 моль, V1 = 2,24л = 2,24*10-3 м3 , V2 = 22,4*10-3 м3 ,

Т = 27°С = 300 K.

Работа изотермического расширения системы может быть вычислена по уравнению:

W = nRT *2,3 lg(V2 /V1);

W = 1*8,314*300*2,3 lg (22,4*10-3 / 2,24*10-3) = 5736,66 Дж

Ответ: 5736,66 Дж

Пример 1-3

При 273 К и 1,0133*105 Па нагревают 5*10-3 м3 криптона до873 К при постоянном объеме. Определите конечное давление газа и теплоту, затраченную на нагревание.

Решение:

V = 5*10-3 м3, T1 = 273 К, Т2 = 873 К, р1 = 1,0133*105 Па.

Теплоту, затраченную на нагревание можно найти по формуле:


Qv = nCv(T2 – T1).

Количество криптона вычисляется из уравнения состояния идеального газа:

pV = nRT; n = p1V/RT1;

n = 1,0133*105 * 5*10-3 /8,314*273 = 0,223 моль.

Для одноатомных газов Сv = 3/2R ;

Qv = 0,223*3/2*8,314(873 – 273) = 1668,620 Дж

Конечное давление при постоянном объеме и известной температуре можно найти по закону Шарля:

p1/T1 = p2/T2;

p2 = p1T2/ T1;

p2 = 1,0133*105*873/273 = 3,2403*105 Па

Ответ: Qv= 1668,620 Дж, p2= 3,2403*105 Па

Пример 1-4

Один моль одноатомного газа, взятого при 25°С и давлении 1,013*105 Па, адиабатически расширился до 0,05 м3. Каковы будут конечные давление и температура?

Решение:

 

T1 = 25°С = 298 K, P1 = 1,013*105 Па, V2 = 0,05 м3.

Исходный объем газа (n = 1):

V1 = nRT11 = 1*8,314*298/1,013*105 = 2,445*10-2 м3.

Конечные давление и температуру можно найти из уравнения адиабаты (g = Срv для одноатомных газов близко к 5/3):

р1V15/3 = р2V25/3,

р2 = р1(V1/ V2 )5/3, р2 = 1,013*105*(2,445*10-2/5,000*10-2)5/3 Па = 0,3*105 Па

Т1V1g-1 = Т2V2g-1, Т2 1 (V1/ V2)g-1,

Т2 = 298*(2,445*10-2/5,000*10-2)5/3 – 1К = 183 К

Ответ: р2 =0,3*105 Па, Т2 = 183 К.


Информация о работе «Химическая термодинамика»
Раздел: Химия
Количество знаков с пробелами: 30891
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
26681
0
1

... и химическим процессам, происходящим в веществе, в различных системах. Важным достижением на пути этого процесса интеграции знаний было открытие фундаментального закона природы - закона сохранения и превращения энергии. Основатель термодинамики С. Карно в своем труде "Размышления о движущей силе огня и о машинах, способах развивать эту силу" пишет: "Тепло - это не что иное, как движущая сила, ...

Скачать
24251
0
2

... газов в результате реакции. Величина Δn может иметь положительное и отрицательное значения, в зависимости от того, увеличивается или уменьшается число молей газов во время процесса. Применение первого начала термодинамики к процессам в любых системах. Закон Гесса Примем, что единственным видом работы, которая совершается системой, является работа расширения. Подставляя уравнение (II, 5) в ...

Скачать
30347
0
0

... , или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях ...

Скачать
11395
1
0

... в ходе реакции мало, т.е. , тогда ; . При термомеханическом описании реакции опускают , , говорят только об изменении энтальпии : Закон Гесса: тепловой эффект химической реакции протекающий или при  или при  не зависит от числа промежуточных стадий, а определяется лишь конечным и начальным состоянием системы.              Тепловой ...

0 комментариев


Наверх