175 К ж 2 тв

 1 3

168 К ж ? тв

Изменение энтропии в первом и в третьем процессах (при изменении температуры) рассчитывается по формуле:

DS1 = nCр(Ж)lnT21, где n = m/М,

DS1 = (1000/32)81,6*ln175/168 Дж*К-1 = 104,10 Дж*К-1,

DS3 = (m/М)Cр(тв)lnT21,

DS3 = (1000/32)55,6 ln168/175 Дж*К-1 = -70,93 Дж*К-1.

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода, учитывая, что теплота при кристаллизации выделяется:

DS2 = DкрН/Ткр,

DS2 = -(1000/32)3160/175 Дж*К-1 = -564,29 Дж*К-1.

Общее изменение энтропии равно сумме по этим трем процессам:

DS= DS1 +DS2 + DS3, DS= (104,10 - 564,29 – 70,93) Дж*К-1 =

= -531,12 Дж*К-1.

Ответ: -531,12 Дж*К-1.

Пример 3-4

Рассчитайте изменение энтропии при смешении моля водорода с 1 моль азота при давлении 1,013*105 Па и постоянной температуре.

Решение:

При смешении газы будут диффундировать друг в друга. При данных условиях газы можно принять за идеальные. Поэтому общее изменение энтропии при смешении газов будет равно сумме изменений энтропий каждого газа при его расширении до объема смеси. Т.к. процесс изотермический, то для каждого газа:

DS= nR*lnV2/V1. V = nRT/р, VH2 = VN2 Þ

DSN2 = DSH2 = nR*ln2 = 1*8,314*ln2 Дж/К= 5,763 Дж/К

DS = DSH2 + SN2, DS = (5,763 + 5,763) Дж/К = 11,526 Дж/К.

Ответ: 11,526 Дж/К.

3.3 Задачи

3-1. Рассчитайте изменение энтропии при нагревании 0,7 моль моноклинной серы от 25 до 200°С при давлении 1 атм. Мольная теплоемкость серы равна: Ср(S(тв)) = 23,64 Дж*К-1*моль-1, Ср(S(ж)) = (35,73 + 1,17*10-3Т) Дж*К-1*моль-1. Температура плавления моноклинной серы 119°С, удельная теплота плавления 45,2 Дж*г-1. (11,88 Дж*К-1)

3-2. Один килограмм воды, взятой при 0°С, переведен в состояние перегретого пара с температурой 200°С и давлении 1,013*105Па. Вычислите изменение энтропии этого перехода, если удельная теплота испарения воды при 100°С равна 2257 Дж/г, удельная теплоемкость водяного пара при давлении в 1,013*105Па равна 1,968 Дж*К-1*моль-1. (7824,8 Дж)

3-3. Под давлением 19,6*104 Па нагревают 2*10-3 м3 аргона до тех пор, пока объем его не увеличится до 12*10-3 м3. Каково изменение энтропии, если начальная температура 373 К. (2,44 Дж*К-1*моль-1)

3-4. Вычислите изменение энтропии при нагревании 16 кг О2 от 273 до 373 К при постоянном объеме. Считайте кислород идеальным газом.(3242,46 Дж*К-1)

3-5. 3,00 моль газообразного СО2 расширяются изотермически (в тепловом контакте с окружающей средой, имеющей температуру 15,0°С) против постоянного внешнего давления 1,00 бар. Начальный и конечный объемы газа равны 10,0 л и 30,0 л, соответственно. Рассчитайте изменение энтропии:

а) системы, считая СО2 идеальным газом,

б) окружающей среды,

в) Вселенной.

(DSсист=27,4Дж*К-1,DSокр= -6,94Дж*К-1,DSвсел=20,46Дж*К-1)

3-6. Найдите изменение энтропии газа газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления р1 до давления р2: а) обратимо; б) против внешнего давления р < р2.

(а) DSгаз = nRln(p1/p2), DSокр = -nRln(p1/p2),

б) DSгаз = nRln(p1/p2), DSокр = nRр(1/p1 - 1/p2))

3-7. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5°С. Теплота плавления льда при 0°С равна 6008 Дж*моль-1. Теплоемкость льда и воды равны 34,7 и 75,3 Дж*К-1*моль-1, соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс самопроизвольный. (-1181Дж/К)

3-8. Вычислите изменение энтропии в процессе затвердения 1 моль переохлажденного бензола при 268 К, если при 278 К DНпл (бензола)=9956Дж*моль-1р бензола(ж)=127,3Дж*К-1*моль-1,

Ср бензола(тв) = 123,6 Дж*К-1*моль-1, Р = cоnst = 1,01*105 Па. (35,61 Дж*К-1*моль-1)

3-9. Определите изменение энтропии, если 100*10-3 кг воды, взятой при 273 К, превращается в пар при390 К. Удельная теплота испарения воды при 373 К равна 2263,8*10-3 Дж*кг-1; удельная теплоемкость жидкой воды 4,2 Дж*кг-1-1; удельная теплоемкость пара при постоянном давлении 2,0*10-3 Дж*кг-1-1.(142 Дж*К-1*моль-1)

3-10. Азот (0,001 м3) смешан с 0,002 м3 кислорода при 27°С и давлении 1,013*105 Па. Найти общее изменение энтропии системы. (0,645 Дж)

3-11. В двух сообщающихся сосудах, разделенных перегородкой, находятся 1 моль азота и 2 моль кислорода. Перегородку вынимают, газы смешиваются. Рассчитайте общее изменение энтропии, если исходные температуры и давления одинаковы, а объемы различны; VN2 = 1 л, VO2 = 2 л. Конечное давление смеси равно исходному давлению газа. (15,876 Дж*К-1*моль-1)

3-12. В двух сосудах одинаковой емкости находится: в первом 2,8 г азота, во втором 4 г аргона. Определите изменение энтропии при диффузии, возникающей в результате соединения сосудов с газами. Температура и давление постоянны. (1,15 Дж)

3-13. Смешали 1 моль аргона, взятого при TAr= 293 К, с 2 моль азота, взятого при ТN2 = 323 К. Исходные давления компонентов и конечное давление смеси одинаковы. Вычислите температурную составляющую энтропии смешения. Теплоемкость аргона равна 20,8 Дж*К-1*моль-1 и азота 29,4 Дж*К-1*моль-1. (0,033 Дж*К-1*моль-1)


Глава 4. Термодинамические потенциалы

 


Информация о работе «Химическая термодинамика»
Раздел: Химия
Количество знаков с пробелами: 30891
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
26681
0
1

... и химическим процессам, происходящим в веществе, в различных системах. Важным достижением на пути этого процесса интеграции знаний было открытие фундаментального закона природы - закона сохранения и превращения энергии. Основатель термодинамики С. Карно в своем труде "Размышления о движущей силе огня и о машинах, способах развивать эту силу" пишет: "Тепло - это не что иное, как движущая сила, ...

Скачать
24251
0
2

... газов в результате реакции. Величина Δn может иметь положительное и отрицательное значения, в зависимости от того, увеличивается или уменьшается число молей газов во время процесса. Применение первого начала термодинамики к процессам в любых системах. Закон Гесса Примем, что единственным видом работы, которая совершается системой, является работа расширения. Подставляя уравнение (II, 5) в ...

Скачать
30347
0
0

... , или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях ...

Скачать
11395
1
0

... в ходе реакции мало, т.е. , тогда ; . При термомеханическом описании реакции опускают , , говорят только об изменении энтальпии : Закон Гесса: тепловой эффект химической реакции протекающий или при  или при  не зависит от числа промежуточных стадий, а определяется лишь конечным и начальным состоянием системы.              Тепловой ...

0 комментариев


Наверх