1.6.         Уравнение состояния.

Изменение одного из свойств системы вызывает изменение, по крайней мере, еще одного свойства, т.е. имеется функциональная зависимость термодинамических параметров, которая носит название уравнения состояния.

Уравнение φ(p,v,T) = 0 является уравнением состояния чистого вещества, если 1) отсутствуют электрические и магнитные поля,

2) эн. гравитации и поверхности можно пренебречь,

3) v – раномерно заполнен объем,

4) во всех частях системы давление и температура постоянны.

pV = nRT – частный случай. Уравнение состояния различных систем термодинамика берется в готовом виде.

Глава 2. Температура. I закон термодинамики.

2.1. Температура.

Введем следующие два постулата:

1)             изолированная система с течением времени всегда приходит в состояние равновесия и никогда самопроизвольно из него выйти не может;

2)             если две системы порознь находятся в равновесии с третьей, то они находятся и в равновесии между собой.

Возьмем две равновесные изолированные системы и дадим им возможность взаимодействовать друг с другом путем теплообмена. Очевидно, возможны два варианта: либо равновесное состояние обеих систем не нарушится, либо нарушится, но стечением времени эта двойная система (в целом изолированная) придет в новое состояние равновесия (постулат 1). Отсюда можно сделать вывод, что существует некоторый параметр, который может указать нарушается ли равновесное состояние систем при тепловом контакте друг с другом или нет. Этот параметр называется температурой.

Итак: любая термодинамическая система обладает функцией состояния – температурой. Равенство температур во всех точках есть условие теплового равновесия двух систем или двух частей одной и той же системы.

Очевидно, во-первых, чтобы узнать одинаковы ли температуры двух систем, совершенно необязательно их приводить в тепловой контакт друг с другом, можно, согласно постулату 2, их привести в тепловой контакт с некоей третьей системой, которую мы обычно называем термометром.

Во-вторых, мы совершенно условно принимаем, что температура той системы выше, которая при тепловом контакте уменьшает свою энергию.

В-третьих, единицей измерения температуры является кельвин, который обозначается буквой К. Международным соглашением приняты следующие величины температур основных и вспомогательных реперных точек:

МПТШ – 68 (ред. 1975 г.)

Ратм Т,К t, 0C

Н2 тройная точка 6,939·10-2 13,81 -259,34

Ne кипение 1 27,102 -246,048

О2 тройная точка 1,54·10-3 54,361 -218,789

кипение 1 90,188 -182,962

Ar тройная точка 0,680 83,798 -189,352

Н2О тройная точка 6,03·10-3 273,16 0,01

Н2О кипение 1 373,15 100

Sn плавление 1 505,1181 231,9681

Zn плавление 1 692,73 419,58

Ag плавление 1 1235,08 961,43

Au плавление 1 1337,58 1064,43

вторичные реперные точки (ред. 1975 г.)

Ne тройная 0,4283 24,561 -248,589

N2 тройная 0,1236 63,146 -210,004

N2 кипение 1 77,344 -195,806

Ar кипение 1 87,294 -185,856

CO2 сублим. 1 194,674 -78,476

Hg плавление 1 234,314 -38,836

H2O плавление 1 273,15 0

6Н5)2О тр.точка 1 300,02 26,87

С6Н5СООН тр.точка 1 395,52 122,37

In плавление 429,74 156,634

Bi плавление 544,592 271,442 Pb плавление 600,652 327,502

Hg кипение 1 629,81 356,66

S кипение 1 717,824 444,674

Эвт. CuAl плавление 821,41 548,26

Sb плавление 903,905 630,756

Al плавление 933,61 660,46

Cu плавление 1358,03 1084,88

Ni плавление 1728 1455

Co плавление 1768 1495

Pd плавление 1827 1554

Rh плавление 2236 1963

Al2O3плавление 2327 2054

Ir плавление 2720 2447

Nb плавление 2750 2477

Mo плавление 2896 2623

W плавление 3695 3422


Информация о работе «Основы термодинамики»
Раздел: Химия
Количество знаков с пробелами: 40166
Количество таблиц: 3
Количество изображений: 4

Похожие работы

Скачать
20795
0
0

... тем существенным фактором, который отличает необратимые процессы в изолированных системах от аналогичных процессов в неизолированных, или открытых, системах. Второе начало термодинамики и утверждение о возрастании энтропии при любом необратимом процессе было сформулировано именно для изолированных систем. Значит, нельзя просто переносить его на неизолированные системы. Чтобы перейти к описанию ...

Скачать
26681
0
1

... и химическим процессам, происходящим в веществе, в различных системах. Важным достижением на пути этого процесса интеграции знаний было открытие фундаментального закона природы - закона сохранения и превращения энергии. Основатель термодинамики С. Карно в своем труде "Размышления о движущей силе огня и о машинах, способах развивать эту силу" пишет: "Тепло - это не что иное, как движущая сила, ...

Скачать
30347
0
0

... , или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях ...

Скачать
34237
0
2

... . Но публикация этого вывода была осуществлена уже после признания закона сохранения энергии, поэтому данный вывод не сыграл той роли. которую мог сыграть, будучи опубликованным ранее. Но так или иначе Карно заложил основы термодинамики как раздела физики, изучающего наиболее общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между ...

0 комментариев


Наверх