4. Примеры систем, семейства решений которых имеют постоянную четную часть
1.
Найдем решение:
;
;
Таким образом:
Сделаем проверку:
;
Четная часть общего решения:
2.
Найдем решение:
Таким образом:
Сделаем проверку: ;
;, четная часть общего решения
3.
Найдем решение:
.
Сделаем проверку:
Таким образом: Четная часть общего решения
Из данных примеров можем заметить, что решения систем записывается в виде:
где и – нечетные функции, а четная часть представлена константой.
(4.1)
Системы вида (4.1) будут иметь семейства решений с постоянной четной частью.
5. Семейства решений с постоянной четной частью
Рассмотрим систему
(5.1)
Надо выяснить, когда и при каких условиях семейства решений этой системы будут иметь постоянную четную часть . Иначе говоря, когда не будет зависеть от .
Рассмотрим уравнение . Его решение
.
Возьмем отражающую функцию системы (5.1), тогда, используя (1.2) можем записать четную часть следующим образом:
(5.2)
Если четная часть будет представлена константой, то
. (5.3)
Продифференцируем (5.2) и прировняем к (5.3). Получаем: . Учитывая (5.1), имеем:
.
Воспользуемся соотношением (1.4)
(5.4)
Таким образом, приходим к теореме:
Теорема: Если система вида (5.1) имеет семейства решений с постоянной четной частью, то выполнено тождество
(5.4)
Заключение
Мы исследовали понятие «отражающей функции».
Для периодических решений дифференциальных систем и уравнений были использованы свойства симметричности (четность, нечетность и т.д.) как функций, задающих изучаемую систему, так и самих решений.
Были изучены семейства решений с постоянной четной частью.
На примерах мы убедились, что для различных систем, семейства решений которых имеет постоянную четную часть, была получена одинаковая четная часть общего решения.
Таким образом, в работе мы исследовали семейства решений линейной системы. Выяснили связь семейства решений этой системы с её отражающей функцией и её свойствами. Установили условия, при которых линейная система имеет общее решение, четная часть которого не зависит от времени.
Литература
1. Арнольд В.И. «Обыкновенные дифференциальные уравнения», М.: Наука, 1971–240 с.
2. Бибиков Ю.Н. «Общий курс дифференциальных уравнений», изд. Ленинградского университета, 1981–232 с.
3. Еругин Н.П. «Книга для чтения по общему курсу дифференциальных уравнений. 3-е издание», М. изд. Наука и Техника, 1979–744 с.
4. Мироненко В.И. «Отражающая функция и периодические решения дифференциальных уравнений», г. Минск: изд. «Университетское», 1986–76 с.
5. Понтрягин Л.С. «Обыкновенные дифференциальные уравнения», М.: Наука, 1970–331 с.
... , имеющие постоянную четную часть Пусть нам дана система (14) Перед нами стоит следующий вопрос о том, когда семейство решений этой системы будут иметь постоянную четную часть. (15) То есть, когда не будет зависеть от времени . Возьмем отражающую функцию системы (14) и используя получим четную часть следующим образом: ...
... . Система векторов условий транспортной задачи линейно независима тогда и только тогда, когда из соответствующих им клеток таблицы нельзя образовать ни одного цикла. Следовательно, допустимое решение транспортной задачи , i=1,2,…,m; j=1,2,…,n является опорным только в том случае, когда из занятых им клеток таблицы нельзя образовать ни одного цикла. Метод вычеркивания. Для проверки возможности ...
... , когда в три пучка листового следа объединяются при внедрении в лакуну центрального цилиндра. Полученные данные еще раз подтверждают ошибочность утверждения Шулькиной (1980) о том, что все представители семейства Campanulaceae обладают однолакунными однопучковыми узлами. Дальнейшие выводы можно стоить только определив строение узла у предков Campanulaceae. Если принять утверждение, что предок ...
... пользоваться и которая не подведет; - операционная система Windows XP Home Edition более удобная и более быстрая. 2. Разработка компьютерной сети на предприятии по разработке программного обеспечения 2.1 Постановка задачи Необходимо разработать локальную сеть из 70 компьютеров. Выбор технологии подключения к Интернет произволен. Удаленный участок сети необходимо разместить в диаметре 1 ...
0 комментариев