Дипломная работа
"Системы с постоянной четной частью"
Содержание
Введение. 3
1. Четные и нечетные вектор-функции. 4
2. Основные сведения из теории отражающих функций. 6
3. Системы чёт-нечет. 11
4. Построение примеров систем, четная часть общего решения которых постоянная 14
5. Простые и простейшие системы.. 22
6. Построение множества систем, четная часть общего решения которых постоянна 26
6.1 Системы, имеющие постоянную четную часть. 26
6.2 Построение систем с заданной четной частью.. 27
Заключение. 31
Список использованных источников………………………………………… 25
Введение
Основным инструментом нашего исследования является понятие отражающей функции. Исследования с помощью отражающей функции позволяет получить новые результаты даже для уже хорошо изученных линейных систем.
При изучении вопросов существования периодических решений дифференциальных систем и уравнений используются свойства симметричности (четность, нечетность и т.п.) как функций, задающих изучаемую систему, так и самих решений.
В данной работе мы будем рассматривать семейства решений с постоянной четной частью, т.е. когда четная часть будет представлена в виде константы.
Разберем примеры систем, семейства решений которых имеют постаянную четную часть. Будем изучать построение систем с заданной четной частью.
1. Четные и нечетные вектор-функции
По аналогии с вещественными функциями одной переменной, вектор-функцию , будем называть четной (нечетной), если для всех , является четной (нечетной) функцией, т.е. область определения симметрична относительно нуля и ().
Любую функцию с симметричной областью определения, можно представить как сумму четной и нечетной функций. Действительно, если
и
то
и является четной функцией, а – нечетной.
будем называть четной частью функции , – нечетной.
Отметим следующие свойства четных и нечетных функций.
Свойство 1 Производная дифференцируемой четной (нечетной) функции есть функция нечетная (четная).
Доказательство. a) – четная функция.
Т.к. и существуют или не существуют одновременно, то , и . Таким образом, производная четной функции есть функция нечетная.
б) – нечетная функция.
Т.к. и существуют или не существуют одновременно, то , и . Таким образом, производная нечетной функции есть функция четная.
Свойство 2 Если – нечетная функция, то .
Доказательство. Поскольку – нечетная функция, то
Подставив вместо получаем
Откуда следует
... . Воспользуемся соотношением (1.4) (5.4) Таким образом, приходим к теореме: Теорема: Если система вида (5.1) имеет семейства решений с постоянной четной частью, то выполнено тождество (5.4) Заключение Мы исследовали понятие «отражающей функции». Для периодических решений дифференциальных систем и уравнений ...
... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...
... от переподъемов, нулевую и максимальную защиты. - предусматривать остановку сосудов в промежуточных точках ствола. световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера. Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного ...
... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориентированную на моделирование зрительной системы человека. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...
0 комментариев