5. Простые и простейшие системы

Лемма 9 Для всякой непрерывно дифференцируемой функции

для которой выполнены тождества (4), имеют место соотношения

Теорема 10 Для всякой дважды непрерывно дифференцируемой функции  определенной в симметричной области , содержащей гиперплоскость  для которой выполнены тождества (4), существует дифференциальная система

c непрерывно дифференцируемой правой частью, отражающая функция которой совпадает с .

Теорема 11 Для всякой дважды непрерывно дифференцируемой функции

определенной в области  содержащей гиперплоскость , для которой выполнены тождества (4), при всех  и достаточно малых  существует дифференциальная система


отражающая функция которой совпадает с  а общий интеграл задается формулой

Следствие 12 Дважды непрерывно дифференцируемая функция

является отражающей функцией хотя бы одной дифференциальной системы тогда и только тогда, когда для нее выполнены тождества (4).

Системы, существование которых гарантируется теоремами 10 и 11, называются соответственно простой и простейшей.

Теорема 13 Пусть

простейшая система, тогда

где  – отражающая функция системы (1).

Доказательство. Если система простейшая,


Теорема 14 Пусть

есть отражающая функция некоторой дифференциальной системы, решения которой однозначно определяются своими начальными данными, а для непрерывно дифференцируемой функции

выполнены тождества (4). Тогда для того, чтобы в области  функция  совпадала с  необходимо и достаточно, чтобы рассматриваемая система имела вид

или вид

где

есть некоторая непрерывная вектор-функция.

Будем говорить, что множество систем вида (1) образует класс эквивалентности, если существует дифференцируемая функция

со свойствами:

1) Oтражающая функция

любой системы из рассматриваемого множества совпадает в своей области определения  с функцией

2) Любая система вида (1), отражающая функция

которой совпадает в области  с функцией  содержится в рассматриваемом множестве.

Две системы вида (1), принадлежащие одному классу эквивалентности, будем называть эквивалентными. Допуская определенную вольность речи, будем говорить также, что они имеют одну и ту же отражающую функцию. Функцию  при этом будем называть отражающей функцией класса, а класс – соответствующим отражающей функции .

Из третьего свойства отражающей функции следует, что система (1) и система

принадлежат одному классу эквивалентности тогда и только тогда, когда система уравнений


совместна.

Необходимым условием совместности этой системы является тождество .



Информация о работе «Системы с постоянной четной частью»
Раздел: Математика
Количество знаков с пробелами: 16002
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
9276
0
1

... . Воспользуемся соотношением (1.4)    (5.4) Таким образом, приходим к теореме: Теорема: Если система вида  (5.1) имеет семейства решений с постоянной четной частью, то выполнено тождество   (5.4) Заключение Мы исследовали понятие «отражающей функции». Для периодических решений дифференциальных систем и уравнений ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
174397
8
0

... от переподъемов, нулевую и максимальную защиты. -  предусматривать остановку сосудов в промежуточных точках ствола. световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера. Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного ...

Скачать
243425
1
0

... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориен­тированную на моделирование зрительной системы челове­ка. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...

0 комментариев


Наверх