3. Системы чёт-нечет

 

Рассмотрим систему

(8)

Будем считать, что всюду в дальнейшем эта система удовлетворяет условиям:

а) Функция  непрерывно дифференцируема, и поэтому, задача Коши для системы (8) имеет единственное решение;

б) Правая часть системы (8) -периодична по .

Лемма 8 Пусть система (8) удовлетворяет условиям а) и б). Тогда продолжимое на отрезок  решение  этой системы будет -периодическим тогда и только тогда, когда

где

– есть нечетная часть решения .

Доказательство. Пусть  – -периодическое решение системы (8). Тогда

Необходимость доказана.

Пусть  – решение системы (8), для которого . Тогда

и поэтому

Таким образом, точка  есть неподвижная точка отображения за период, а решение  – -периодическое.

Доказанная лемма, вопрос о периодичности решения

сводит к вычислению одного из значений нечетной части . Иногда относительно  можно сказать больше, чем о самом решении . Это позволяет в таких случаях делать различные заключения относительно существования периодических решений у систем вида (8). Дифференцируемые функции

удовлетворяют некоторой системе дифференциальных уравнений. Прежде, чем выписать эту систему, заметим:

(9)


так как

решение системы (8). Заменяя в тождестве (9)  на  и учитывая, что производная четной функции – функция нечетная, а производная нечетной функции – функция четная, получаем тождество –

(10)

Из тождеств (9) и (10) найдем производные:

Таким образом вектор-функция

(11)

удовлетворяет следующей системе дифференциальных уравнений порядка :

(12)

При этом


Систему (12) будем называть системой чет-нечет, соответствующей системе (8). решение системы чет-нечет, как следует из условия а), однозначно определяется своими начальными условиями.


4. Построение примеров систем, четная часть общего решения которых постоянная

Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него :

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Сделаем преобразования и приведем подобные

Таким образом:

Сделаем проверку, для этого в исходную систему подставим полученное решение:

Получили верные равенства. Значит было найдено правильное решение исходной системы.

Четная часть общего решения:


Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него :

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Сделаем преобразования и приведем подобные

Таким образом:

Сделаем проверку:

Четная часть общего решения


Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него :

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Получили два решения  и .

1) ;

2) ;

Сделаем проверку для :


Получили верные равенства. Значит было найдено правильное решение исходной системы.

Сделаем проверку для :

Отсюда видно, что  не являются решением для исходной системы.

Таким образом:


Четная часть общего решения

Из данных примеров можем заметить, что решения систем записывается в виде:

где  и  – нечетные функции, а четная часть представлена константой.

; ;

(13)

Системы вида (13) будут иметь семейства решений с постоянной четной частью. В этом легко убедится, проделав вычисления, аналогичные предыдущим примерам.



Информация о работе «Системы с постоянной четной частью»
Раздел: Математика
Количество знаков с пробелами: 16002
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
9276
0
1

... . Воспользуемся соотношением (1.4)    (5.4) Таким образом, приходим к теореме: Теорема: Если система вида  (5.1) имеет семейства решений с постоянной четной частью, то выполнено тождество   (5.4) Заключение Мы исследовали понятие «отражающей функции». Для периодических решений дифференциальных систем и уравнений ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
174397
8
0

... от переподъемов, нулевую и максимальную защиты. -  предусматривать остановку сосудов в промежуточных точках ствола. световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера. Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного ...

Скачать
243425
1
0

... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориен­тированную на моделирование зрительной системы челове­ка. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...

0 комментариев


Наверх