1. Обучающий материал.

2. Задачи для самостоятельного решения.

Заключение. Выводы и предложения.

Список использованной литературы.

В I главе проанализирована литература по теме: «Решения показательно-степенных уравнений и неравенств».

В II главе теоретические сведения о степенной и показательной функциях и применение их свойств при решении показательно-степенных уравнений и неравенств, выявляются недостатки в понимании учащимися отрицательного аргумента показательно-степенной функции.

В III главе «Решение показательно-степенных уравнений, алгоритм и примеры» приведен полный анализ решения показательно-степенных уравнений, рассмотрен алгоритм решения показательно-степенных уравнений и примеры, и примеры в которых он применяется.

В IV главе «Решение показательно-степенных неравенств, план решения и примеры» приведен полный анализ решения показательно-степенных неравенств и рассмотрен план решения показательно-степенных неравенств и примеры, в которых он применяется.

В V главе рассматривается методика обучения учащихся решению показательно-степенных уравнений и неравенств, приведен обучающий материал, разработана система заданий с учетом разного уровня сложности, которая содержит в себе задания используемые на уроке, задания для самостоятельного решения.

Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.

Для решения показательно-степенных уравнений и неравенств необходимо знать свойства показательной и степенной функции и уметь ими пользоваться. В этой главе мы рассмотрим данный вопрос.

 

II.1. Степенная функция и ее свойства.

 

Степенная функция с натуральным показателем. Функ­ция у = хn, где n — натуральное число, называется степен­ной функцией с натуральным показателем. При n = 1 получаем функцию у = х, ее свойства:

Прямая пропорциональность. Прямой пропорциональ­ностью называется функция, заданная формулой у = kxn, где число k называется коэффициентом пропорциональ­ности.

Перечислим свойства функции у = kx.

1)  Область определения функции — множество всех действительных чисел.

2)  y = kx — нечетная функция (f( — х) = k ( — х)= — kx = -k(х)).

3) При k > 0 функция возрастает, а при k < 0 убывает на всей числовой прямой.

Гра­фик (прямая) изображен на рисунке II.1.

Рис. II.1.

При n=2 получаем функцию y = х2, ее свойства:

Функция у —х2. Перечислим свойства функции у = х2.

1)  Область определения функции — вся числовая прямая.

2)  у = х2— четная функция (f( — х) = ( — x)2 = x2 = f (х)).

3)  На промежутке [0; + οο) функция возрастает.

В самом деле, если , то , а это и означает возрастание функции.

4) На промежутке (—оо; 0] функция убывает.

В самом доле, если ,то — х1 > — х2 > 0, а потому

(—х1)2> ( — х2)2, т. е.  , а это и означает убывание функции.

Графиком функции y=х2 является парабола. Этот график изображен на рисунке II.2.

Рис. II.2.

При n = 3 полу­чаем функцию у = х3, ее свойства:

1)  Область определения функции — вся числовая прямая.

2)  y = х3 — нечетная функция (f ( — х) = { — x)2 = — х3 = — f (x)).

3) Функция y = x3 возрастает на всей числовой прямой. График функции y = x3 изображен на рисунке. Он на­зывается кубической параболой.

График (кубическая парабола) изображен на рисунке II.3.

Рис. II.3.

Пусть n— произвольное четное натуральное число, большее двух:

n = 4, 6, 8,... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х2. График такой функ­ции напоминает параболу у = х2, только ветви графика при |n| >1 тем круче идут вверх, чем больше n, а при тем «теснее прижимаются» к оси х, чем больше n.

Пусть n — произвольное нечетное число, большее трех: n = = 5, 7, 9, ... . В этом случае функция у = хn обладает теми же свойствами, что и функция у = х3. График такой функции на­поминает кубическую параболу (только ветви графика тем круче идут вверх, вниз, чем больше n. Отметим также, что на промежутке (0; 1) график степенной функции у = хn тем медленнее отдаляется от оси х с ростом х, чем больше n.

Степенная функция с целым отрицательным показа­телем. Рассмотрим функцию у = х-n, где n — натуральное чис­ло. При n = 1 получаем у = х-n или у = Свойства этой функции:

График (гипербола) изоб­ражен на рисунке II.4.

Пусть n — нечетное число, большее единицы,

n = 3, 5, 7, ... . В этом случае функция у = х-n обладает в основном теми же свойствами, что и функция у = График функции у = х-n (n = 3, 5, 7, ...) напоминает

Рис. II.4.

график функции у =. Пусть n — четное число, например п = 2. Перечислим не­которые свойства функции у = х-2, т. е. функции y = .

1)  Функция определена при всех х0.

2)  y = четная функция.

3)  y = убывает на (0; +оо) и возрастает на (—оо;0).

Теми же свойствами обладают любые функции вида y = х-n при четном n, большем двух.

График функции у =  изображен на рисунке. Ана­логичный вид имеет график функции , если n = 4, 6, ... .

Функции вида , ,  обладают теми же свойствами, как и функция .

Степенная функция с положительным дробным показа­телем. Рассмотрим функцию у = хr, где r — положительная несократимая дробь. Перечислим некоторые свойства этой функции.

1)  Область определения — луч [0; + оо).

2)  Функция ни четная, ни нечетная.

3)  Функция у = хr возрастает на [0; +оо).

Рис. II.5.

На рисунке II.5. изображен график функции Он заключен между графиками функций у = х2 и у = х3, заданных на промежутке [0; + оо).

Подобный вид имеет график любой функции вида у = хr, где .

На том же рисунке изображен график функции . Подоб­ный вид имеет график любой степенной функции у = хr, где .

Степенная функция с отрицательным дробным пока­зателем. Рассмотрим функцию у = х-r, где r — положительная несократимая дробь. Перечислим свойства этой функции.

1)  Область определения — промежуток (0; + оо).

2)  Функция ни четная, ни нечетная.

3)  Функция у = х-r убывает на (0; +оо).

Построим для примера график функции у — х таблицу значений функции:

Нанесем полученные точки на координатную плоскость и соединим их плавной кривой (см. рис. II.6.).

 Подобный вид имеет график любой функции

у = хr, где r — отрицательная дробь.

Рис. II.6.

 

II. 2. Показательная функция и ее свойства.

Функция, заданная формулой вида у = ах, где а — некоторое положительное число, не равное единице, называется показатель­ной.

1.Функция у = ах при а>1 обладает следующими свойст­вами (см. рис. II.7.):

а) область определения — множество всех действительных чисел;

б) множество значений — множество всех положительных чисел;

Рис. II.7.

в) функция возрастает;

г) при х = 0 значение функции равно 1;

д) если x > 0, то аx> 1;

е) если х < 0, то 0 < ах < 1.

3. Функция у = ах при 0<а< 1 обладает следующими свойст­вами (см. рис. II.8.):

а) область определения D(f)=R;

б) множество значений E(f)=R+;

в) функция убывает;

г) при х = 0 значение функции равно 1;

д) если х > 0, то 0 < ах < 1;

е) если х < 0, то ах > 1.

Рис. II.8.


Глава III. Решение показательно-степенных уравнений, алгоритмы и примеры.

Так называются уравнения вида , где неизвестное находится и в показателе и в основании степени.

Можно указать совершенно четкий алгоритм решения уравнении вида . Для этого надо обратить внимание на то, что при а(х) не равном нулю, единице и минус единице равенство степеней с одинаковыми основаниями (будь-то положительными или отрицательными) возможно лишь при условии равенства показателей То - есть все корни уравнения  будут корнями уравнения f(x) = g(x) Обратное же утверждение неверно, при а(х) < 0 и дробных значениях f(x) и g(x) выражения а(х)f(x) и

а(х)g(x) теряют смысл. То - есть при переходе от к f(x) = g(x) (при и  могут появиться посторонние корни, которые нужно исключить проверкой по исходному уравнению. А случаи а = 0, а = 1, а =-1 надо рассмотреть отдельно.

Итак, для полного решения уравнения  рассматриваем случаи:

1.  а(х) = О . Если при значении х, удовлетворяющем этому уравнению, f(x) и g{x) будут положительными числами, то это решение. В противном случае, нет

2.  а(х) = 1. Корни этого уравнения являются корнями и исходного уравнения.

3.  а(х) = -1. Если при значении х, удовлетворяющем этому уравнению, f(x) и g(x) являются целыми числами одинаковой четности (либо оба четные, либо оба нечетные) , то это решение. В противном случае, нет

4.  При  и  решаем уравнение f(x)= g(x) и подстановкой полученных результатов в исходное уравнение отсекаем посторонние корни.

Примеры решения показательно-степенных уравнений.

Пример №1.

Решение

1) x – 3 = 0, x = 3. т.к. 3 > 0, и 32 > 0, то x1 = 3 - это решение.

2) x – 3 = 1, x2 = 4.

3) x – 3 = -1, x = 2. Оба показателя четные. Это решение x3 = 1.

4) x – 3 ≠ 0 и x ≠ ± 1. x = x2, x = 0 или x = 1. При x = 0, (-3)0 = (-3)0 –верно это решение x4 = 0. При x = 1, (-2)1 = (-2)1 – верно это решение x5 = 1.

Ответ: 0, 1, 2, 3, 4.

Пример №2.

Решение

По определению арифметического квадратного корня: x – 1 ≥ 0, x ≥ 1.

1) x – 1 = 0 или x = 1,  = 0, 00  это не решение.

2) x – 1 = 1 x 1 = 2.

3) x – 1 = -1 x 2 = 0 не подходит в ОДЗ.

4)  =

Д = (-2) – 4*1*5 = 4 – 20 = -16 – корней нет.

Ответ: 2.

Пример №3.

Решение

1)  = 0 решения нет, т.к. 0 в любой степени не равен 1.

2)  ≠ 0 т.е. . Тогда можем записать:

3)  = 1.  = 0

 и

4)  = -1 х = 0 или х = 1. При х = 0  = -1. (-1)-1 ≠ (-1)0. Это не решение. При х = 1 (-1)0 = (-1)0. Это решение х3 = 1.

5)  ≠ 0 и  ≠ ±1 имеем  = 0,  = -1 или

 = 1. Эти корни уже учтены.

Ответ: -1, 1, 2.

Пример №4.

Решение

1)    При решений нет, т.к. 0 в любой степени не равен 1.

при ,

2)    , .

3)    , .

, (-1)0 = (-1)0 это решение.

.

4)  и

 или

При  (-4)0 = 1 – верно.

Ответ: -1, 2, 4.

Пример №5.

Решение

1) , ,  это не решение.

2) ,  и .

3) отрицательных значений основание не имеет. При  и , , ,

х = 5, 315 = 315 – верно. х3 = 5,

х = 2 – не является решением.

Ответ: 1,3,5.

Пример №6

Решение

1)  не дает решений, т.к. 0 ни в какой степени не равен 1.

2) .  или .

3) отрицательных значений  не имеет.

4) При ,

, т.к. , то . Проверка 20 = 1 – верно.

Ответ: -1, 1, 2.

Пример №7

Решение

1) , , , . Это решение .

2) , .

3) , ,  - четное и -3х – четное. Это решение. х2 = -4.

4)  и , , , , 4-3 = 4-3 – верно. .

Ответ: -4, -3, -2, 1

 

Пример №8

Решение

ОДЗ: ,

, ,

 и

Все решения принадлежат уравнению =2.

, ,  и . Оба значения принадлежат к ОДЗ.

Ответ: -4, -1.

Пример №9

Решение

ОДЗ: , , .

1)  решений не имеет, т.к. 0 в любой степени не равен 1.

При ,  или ,

ОДЗ, ОДЗ.

Значит все решения содержатся в уровнении = 0,  или .

Проверка: , 20 = 1 – верно.

,  - верно.

Ответ: 0, 3/2.

Пример №10

Решение

1)  решений не дает, т.к. 0 в любой степени не равен 1.

2) При , , . Все решения принадлежат уравнению .  или .

3) ,  и .

Второе решение не подходит, т.к , . А  является решением

Ответ: , 2, 4.

Пример №11

Решение

1) , ,  и  это решение .

2) , .

3) , ,  - четное,  - нечетное. Это является решением.

4)  или , , , , .

Проверка: ,  - верно.

Но  не является корнем!

Выражение (-1,5)52,5, которое получается при проверке не имеет смысла, т.к. степень отрицательно числа имеет смысл только для целых показателей. Равенство =  только для . Значит, отрицательное число можно возводить только в степень с целым показателем.

Ответ: -4, -2, -1.

Пример №12

Решение

ОДЗ: . Значит 0,1 и -1 отпадают.

 и все решения содержатся в уравнении.

, ,

Ответ: 5.

 

Пример №13

Решение

1) , , . Это решение .

2) , , .

3) отрицательных значений  не имеет.

При  или  все решения в уравнении ,  и .

При ,  - верно. .

Ответ: -1, 2, 3, 4.

Пример №14

Решение

ОДЗ:

1)         При  решений нет, т.к. 0 в любой степени не равен 1.

При

2) , и . - решение, а .

3)  для всех . При  и  все решения содержатся в уравнении ,  или . При  , .

При ,  - верно. .

Ответ: 4, 5.

Пример №15.

,

Решение

 

используя свойства логарифма  и получили:

=

В первой части уравнения выполнили преобразования

. Получили уравнение . Все решения содержатся в уравнении.

 или .

Ответ: 2.

Пример №16

Решение

ОДЗ:

Преобразуем знаменатель дроби в правой части уравнения

; .

, , где

1) ,  - верно.

2) ,

Пасть , тогда

,  или .

Следовательно;  или , , .

Ответ: 1, 0,1, 0, 0,01.

Пример №17

Решение

ОДЗ:  и

Выполним преобразования.

+= 2+2

+= 4

Пусть , а ,

Следовательно,  или

,

2*2t = 4

2t = 4/2

2t = 2

t = 1

Ответ: 2.

Пример №18

Решение

ОДЗ:

;

Прологарифмируем обе части равенства:

, где .

Умножим обе части уравнения на 2.

Пусть , тогда

,  или

1) ,

 или

Ответ: 0.1, 10.

Пример №19

Решение

ОДЗ:

Обратите внимание  ниоткуда не следует! Наоборот, из ОДЗ видно, что может быть отрицательным!

,

 или

Оба значения в ОДЗ.

Так как возводили в квадрат, корни надо проверить.

,  - верно.

,  - верно.

Ответ: -3, 3.

Пример №20

ОДЗ:

Возведем обе части уравнения в квадрат (т.к. они положительны, то посторонние корни не появляются)

 или

Прологарифмируем по основанию 10.

 или

1)  или

,

Ответ: 0.01, 100.

Пример №21

Решение

ОДЗ:

Прологарифмируем по основанию 10.

, где .

Пусть , тогда:

 умножим на 4

,

,  или

1)

2)

Ответ: 0,0001, 10.

Пример №22

Решение

ОДЗ:

Заменим: , получим:

, где .

Решаем уравнение:

;  или

1) ; ; . .

2) , , , , .

; ; ; .

Ответ: 0,1, 1, 10.

Пример №23

Решение

 и

\ :

Подставим во второе уравнение вместо  число 5, получим:

 или

составляем систему уравнений:

Ответ: (13;8)

Пример №24

Решение

ОДЗ:

;

,

;  или

, .

Ответ: 5.

Пример №25

Решение

ОДЗ:

Прологарифмируем правую и левую части данного уравнения по основанию 10:

Получим:

 или

Обозначив , перепишем записанное уравнение в виде:

.

Решая его относительно , находим , .

Используя обозначения , из первого решения квадратного уравнения имеем . Отсюда . Используя решение , получаем . Преобразуем правую часть этого уравнения:

. Значит, , т.е. .

Ответ: 30, 100.

Пример №26

Решение

Так как , то при  и  имеем равносильное уравнение:

 или

.

,

Ответ: 5.

Пример № 27

Решение

ОДЗ:

Так как обе части уравнения положительны, то прологарифмируем по основанию 10:

,

;  или

1) 2)

Ответ: 0.1, 100.

Пример №28

Решение

ОДЗ:

Так как обе части уравнения положительны, то прологарифмируем по основанию 3:

 и , поэтому

Пусть , тогда

 или .

1)

;

2)

Ответ: , 3.

Пример №29

Решение

1) , т.к. 0 в любой степени не равен 1.

2) = 1, =1, ,  или

=-1, , .

Так как 1 в любой степени равна 1, то это решения.

3)  (т.к. )

При  все решения принадлежат уравнению .  или .

При  = 0, что не удовлетворяет уравнению

,

Ответ: , .

, .

, .

Пример №30

Решение

ОДЗ:

=

1) , , .

2) Так как , то остальные решения получаем из уравнения : Отсюда  или . ,  и , .

Ответ:  , -,  и , .

Пример №31

Решение

1)  или ,  и . Это решение. .

2) ,  и

3) Так как , то ;

;

; . Это решение.

Ответ: ; 5; 3; 4.

Пример №32

Решение

 при всех

1) ,  - решений нет.

2). Потому при  левая часть равна единице, а правая нет. Это решение.

3) ;

;

;

 ;

;

;

;

 и ;

; ;

; ;

;

;

 - решений нет.

Ответ: -3, 3.

Пример №33

Решить графически уравнение:

Решение

У функции  Д(y): x > 0 и log2 x > 0, т.е.,

x > 1. обл. определения х > 1.

А теперь:  (формула перехода к новому основанию и определение логарифма).

Тогда (определение логарифма: ).

Так, что нужно только учитывать, что Д(у): x > 0.


Построим график функции (рис III.1).

у

 

 

2

1

0 1 4 х

Рис. III.1.

Ответ: (4; 2).

Пример №34

Решить систему уравнений:

 

Решение:

По определению логарифма имеем:

       .

Прологарифмируем первое уравнение системы по основанию х.

     .

Из второго уравнения системы выразим у через х:

,

Тогда:

Пусть , , Д = (-5)2 -4*1*4 = 9, ,  или .

1) 2)

Д = (-3)2 – 4*1*(-4) = 25 пусть , тогда

или  Д = (-1)2 – 4*3*4 = -47<0

 или корней нет

(-1,-1) – удовлетворяет ОДЗ

(4,4) решение системы уравнений.

Ответ: (4, 4).

Пример №35

Решите систему уравнений:

Решение.

По определению логарифма имеем:

    

Основание логарифма может быть:

1)  (дробное)

(-1, 0) – не удовлетворяет ОДЗ.

2)

Выполним преобразования:

Прологарифмируем первое уравнение системы по основанию х:

,

, ,

 или

Пусть , тогда

Д = (-)2 -4*1*(-2) = 9

 или

: (х+1)

, где

;

1)

 или

Решаем биквадратное уравнение

Примем , тогда получим

D = 32 – 4*1*(-4) = 25

;  или

а)

б) ;  (не удовлетворяет ОДЗ)

 - решение системы уравнений.

2)

 или

- (не удовлетворяет ОДЗ)

D = (-1)2 -4*4*3 = -47 – корней нет.

Ответ: . [ ]

Пример № 36

Решение

Для любого х  и  ОДЗ этого уравнения состоит из всех х удовлетворяющих условию , т.е. ОДЗ есть множество всех х из промежутка на этом множестве. Исходное уравнение равносильно совокупности уравнений.

и

Решаем ее.

 

 принадлежат . Они и являются решениями исходного уравнения.

Ответ:  .


Глава IV. Решение показательно-степенных неравенств, план решения и примеры.

 

Неравенства вида  (или меньше) при а(х)>0 и  решаются на основании свойств показательной функции: для 0 < а(х) < 1 при сравнении f(x) и g(x) знак неравенства меняется, а при а(х) > 1 – сохраняется.

Самый сложный случай при а(х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f(x) и g(x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию

Наконец, если исходное неравенство будет выполняться при а(х) = 0 или а(х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.

 

Пример 1.

 Решить неравенство:

 23x:+7 < 22x-1.

Решение.

Здесь основание степени больше 1, поэтому, сравнивая показатели, запишем неравенство того же смысла: Зх + 7 < 2х - 1. Решив это неравенство, получим х < - 8.

Ответ: -8.

Пример 2.

Решить неравенство:

Решение.

Так как 625 = 252= , то за­данное неравенство можно записать в виде

Так как 0 < 0,04 < 1, то, сравнивая показатели, запишем неравенство противоположного смысла 5х - х2 - 8 = -2. Имеем последовательно

,

,

,

.

Решив последнее неравенство, полу­чим 2  х 3.

Таким образом множество решений заданного неравенства есть отрезок [2; 3].

Ответ: [2; 3].

Пример 3.

Решим неравенство

0,57-Зх < 4.

Решение

Пользуясь тем, что 0,5 -2 = 4, перепишем заданное нера­венство в виде

0,57-Зх < 0,5-2. Показательная функция y= 0,5x убывает (основание 0,5 меньше 1). Поэтому данное не­равенство равносильно неравенству 7 – Зх > - 2, откуда х < 3.

Ответ: ( — оо ; 3).

Пример 4.

Решим неравенство

Показательная функция y = 6x возрастает. Поэтому дан­ное неравенство равносильно неравенству х2 + 2x > 3, решая которое, получим: (-оо; -3)

и (1; оо).

Ответ: (-оо; -3) и (1; оо).

Пример 5.

Решим неравенство:

Сделаем замену , тогда и неравенство перепишется в виде , откуда . Следовательно, решением данного неравенства являются числа х, удовлетворяющие неравенствам , и только такие числа. Но , , а функция  убывает,

поскольку  < 1. Поэтому решением неравенств  будут числа х, удовлетворяющие неравенствам - 2 < х < 1.

Ответ: ( - 2; 1).

Пример 6.

Решение

1)     


 

 2 3 10

Изобразим на числовом луче

Должны выполняться все три неравенства, т.к. это система. Но при  взятое не выполняется. Решений нет.

2)   

Изобразим на числовом луче

  10

Если , то

 -решение системы неравенств.

Остальные случаи не дают решений, т.к.  или 1 не удовлетворяют условию, а при  т.е.  получаем отрицательные числа с дробными показателями степени.

Ответ:


Пример 7

Решение

При , х = 2,5 или х = -1

При  или  можно записать .

  

При  второе неравенство не выполняется. Система решений не имеет.

Изобразим на числовом луче решение системы неравенств

-1  2,5 3

Система не имеет решений.

2)  

Изобразим на числовом луче решение системы неравенств

 решение системы неравенств.

3) ,  - выражение  имеет смысл тогда, когда х – 3 – целое число, чтобы показатель х – 3 был целым числом. Таким образом х – целое число в промежутке (-1; 2,5) т.е. х может принимать значения 0,1,2.

Проверка:

При - верно.

При  - верно.

При  - верно.

4) , х2 = 2,5 и х1 = -1

При х = -1 – не имеет смысла выражение 0-4.

При х = 2,5, 02,5 – не имеет смысла.

5)

;

При ;  - верно.

При ;  - верно.

Ответ:  или .


Глава V. Опыт проведения занятий со школьниками

по данной теме.

Анализируя опыт проведения занятий по решению показательно-степенных уравнений и неравенств с учащимися в старших классах я пришла к выводу, что недостаточно времени уделяется на решения заданий и упражнений по данной теме. Всего в школьном курсе на изучение математики отводится 850 часов, из них на решение всех уравнений и неравенств всего лишь 12% учебного времени, а на решение показательно-степенных уравнений и неравенств вообще ничтожное количество часов. Однако, используя факультативные занятия в старших классах, кружковую работу, элективные курсы можно значительно увеличить возможность учащихся реализовать себя, усилить их подготовку к выпускным и вступительным экзаменам.

Проводя занятия с учащимися я стараюсь больше внимания уделять решению конкретных заданий и упражнений, на основе чего строю алгоритм решения и создаю модель решения заданий одного вида или похожих между собой

 

Задачи для самостоятельного решения.

Решить уравнения.

1. Ответ: .

2. Ответ: 2.

3. Ответ: 7; 14.

4.  Ответ: .


Информация о работе «Показательно-степенные уравнения и неравенства»
Раздел: Математика
Количество знаков с пробелами: 33147
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
98604
5
19

... проведении исследования были решены следующие задачи: 1)  Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...

Скачать
8510
0
20

... неравенств в школьном курсе не рассматри- вают, а на вступительных экзаменах эти задания часто дают. Я самостоятельно изучил правила решения иррациональных уравнений и неравенств. В реферате показаны решения как иррациональных уравнений и неравенств стандартного типа, так и повышенной сложности. Поэтому реферат можно использовать как учебное пособие для подготовки в ВУЗ, также рефератом можно ...

Скачать
89437
1
28

... сформулированной гипотезы необходимо было решить следующие задачи: 1.  Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2.  Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3.  Экспериментально проверить эффективность разработанной методики. Для решения ...

Скачать
90068
3
1

... курс «Решение уравнений и неравенств с использованием свойств функций» Глава II. Разработка элективного курса «Решение уравнений и неравенств с использованием свойств функций» §1. Методические основы разработки элективного курса   Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и ...

0 комментариев


Наверх