ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ОБНИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АТОМНОЙ ЭНЕРГЕТИКИ (ИАТЭ)

Факультет естественных наук

Р.Т. ГАЛУСАРЬЯН

Сборник задач и упражнений по курсу «Высшая математика»

(1-й семестр, часть II)

Обнинск 2008


УДК 51(076)

Галусарьян Р.Т. Сборник задач и упражнений по курсу «Высшая математика», ч. II.  Обнинск: ИАТЭ, 2008.  76с.

Во второй части сборника включены вопросы, связанные с элементами комбинаторики, математической индукции и комплексными числами. В сборнике приведены индивидуальные домашние задания (ИДЗ) по темам: 1)Предел функции и непрерывность; 2)Производная. К задачам ИДЗ: Предел функции и непрерывность приведены ответы

Рецензенты: д.ф.-м.н. Е.А.Сатаев ,

к. ф.-м. н. А.Г.Слесарев

Темплан 2008, поз 17

© Р.Т.Галусарьян, 2008г.

© Обнинский государственный технический университет атомной энергетики, 2008 г.


Содержание

Предисловие

Глава 3. Введение в анализ

§3.1 Комбинаторика и бином Ньютона

§3.2 Комплексные числа

Глава 4. Индивидуальные домашние задания

§4.1 ИДЗ «Предел функции и непрерывность»

§4.2 ИДЗ «Производные»

Глава 5. Семинары

§5.1 Применение производной при исследовании функции

§ 5.2 Неопределенный интеграл

Ответы

Литература


Предисловие

Вторая часть сборника задач по курсу «Высшая математика» содержит введение в математический анализ (Глава 3) и индивидуальные домашние задания по теме: «Предел функции и непрерывность» и по теме: «Производная»

Глава 3 содержит следующие темы: комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Приведены основные формулы и методы решения задач.

Глава 4 содержит индивидуальные домашние задания по основным темам курса математического анализа, изучаемым в первом семестре

Глава 5 посвящена семинарским занятиям. Приводится перечень основных вопросов, рассматриваемых на семинаре, задачи, которые необходимо решать на семинаре и задачи для самостоятельной работы.

К задачам главы 3 и к задачам ИДЗ «Предел функции» приведены ответы. Для наиболее сложных задач приводятся решения.


Глава 3. Введение в анализ

§3.1 Комбинаторика и бином Ньютона

1. Комбинаторика

1. Число перестановок из n элементов равно произведению n последовательных натуральных чисел от 1 до n.

Число перестановок обозначается так:

 или n! (эн-факториал) и вычисляется по формуле:

 n! =. (1.1)

2. Число размещений (без повторений) из n элементов по к

 равно произведению к последовательных натуральных чисел, наибольшее из которых равно n:

, (1.2)

или . (1.3)

3. Число сочетаний из n элементов по к ( ) определяется по формуле:

 (1.4)

или  (1.5)

Из формулы (1.5) следует . (1.6)


4. Размещения с повторениями

Пусть из множества Х, состоящего из n элементов, надо составить строку из к элементов, причем каждый элемент в строке может быть любым элементом из х, т.е. в строке элементы могут повторяться.

Общее число всех таких строк есть число размещений из n по k с повторениями: А( n, k ) = nk . (1.7)

В рассмотренном случае каждый элемент строки может принимать n значений. Если в строке  элемент  может принимать  значений, элемент  может принимать  значений, то количество всех таких строк определяют по формуле:

. (1.8)


Информация о работе «Р.Т. Галусарьян. Сборник задач и упражнений по курсу "Высшая математика"»
Раздел: Математика
Количество знаков с пробелами: 31653
Количество таблиц: 12
Количество изображений: 5

0 комментариев


Наверх