3. Действия над комплексными числами в тригонометрической и показательной формах

Умножение. Модуль произведения равен произведению модулей, аргумент произведения равен сумме аргументов:

 (2.16)


Деление. Модуль частного равен частному модулей, аргумент частного равен разности аргументов:

 (2.17)

Возведение в целую степень п. Модуль возводится в степень п, аргумент умножается на п.

 (2.18)

Извлечение корня степени п. Извлекается арифметический корень из модуля, общее значение аргумента делится на п. Корень имеет ровно п различных значений, если

(2.19)  

Формулы (2.18) и (2.19) называются формулами Муавра.

Упражнения к § 3.2

3.20 Выполнить действия

 ; 5) ; 6) ; 7) ;

 9) .

3.21 Представить в виде суммы более простых дробей:

1) ; 2) ; 3) .

3.22 Решить уравнения:

1) , 2) , 3) , 4) , 5) , 6) , 7) , 8) , 9) , 10) , 11) .

3.23 Построить на комплексной плоскости и представить в тригонометрической форме числа:

1)  , 2) , 3) , 4) ,

5) , 6) , 7) , 8) ,

9) 5, 10) i.

3.24 Представить в показательной форме числа (указать главное значение аргумента):

 2) ;

3)  4) ;

5)  6)

7)  8)  9)  

10)

11)  12)

13)  14)

3.25 Выполнить действия: 1)  2) ,

3) , 4) , 5) ,

6) , 7) , 8)  

9) , 10) ,

11)  , 12) , 13) ,

14) , 15)  16)  17) .

3.26 Найти все значения корней:

 

3.27. Решить уравнения:

3.28 Выразить через степенииследующие функции:

3.29 Доказать:

1)

2)

3)

  если .

Указание. Воспользуйтесь формулами Эйлера

а также формулой суммы членов геометрической прогрессии.


Глава 4 Индивидуальные домашние задания

§4.1 Индивидуальное домашнее задание (ИДЗ) по теме: “Предел функции и непрерывность”

Задача 1. Найти пределы:

Задача 2. Найти пределы.

 2.1.

 2.2.

 2.3.

 2.4.

 2.5.

 2.6.

 2.7.

 2.8.

 2.9.

 2.10.

2.11.

 

2.13.

2.14.

 

2.15.

 

2.16.

 

2.17.

 

2.18.

 

2.19.

 

2.20.

2.21.

2.22.

2.23.

 

2.25.

2.26.

2.27.

2.28.

 

2.29.

 

2.30.

Задача 3. Доказать непрерывность функции f(x) в точке x0.

3.1. f(x)=6-x2, x0=2

3.2. f(x)=3x2-2, x0=-2

3.3. f(x)=-2x2-3, x0=3

3.4. f(x)=2x2+5, x0=-3

3.5. f(x)=5x2-1, x0=4

3.6. f(x)=2-3x2, x0=4

3.7. f(x)=4x2-3, x0=-1

3.8. f(x)=4x2+5, x0=2

3.9. f(x)=x2+7, x0=-3

3.10. f(x)=7-2x2, x0=3

3.11. f(x)=-2x2-7, x0=2

3.12. f(x)=3x2+2, x0=4

3.13. f (x)=5x2+3, x0=-2

3.14. f(x)=4x2-1, x0=-3

3.15. f(x)=7x2-1, x0=4

3.16. f(x)=-8x2-1, x0=1

3.17. f(x)=2x2+11, x0=5

3.18. f(x)=10x2-3, x0=5

3.19. f(x)=13-2x2, x0=3

3.20. f(x)=3-10x2, x0=4

3.21. f(x)=4x2-11, x0=-2

3.22. f(x)=1-5x2, x0=2

3.23. f(x)=3-4x2, x0=1

3.24. f(x)=-7-x2, x0=1

3.25. f(x)=x2-6, x0=3

3.26. f(x)=9-5x2, x0=-2

3.27. f(x)=7-5x2, x0=-2

3.28. f(x)=-2x2-1, x0=3

3.29. f(x)=11-3x2, x0=2

3.30. f(x)=4x2-15, x0=-1

Задача 4. Найти пределы разложением на множители и по правилу Лопиталя.

4.1.

 4.2.

4.3.

 4.4.

4.5.

 4.6.

4.7.

 4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

Задача 5. Найти пределы, используя метод освобождения от иррациональности.

5.1.

 5.2.

5.3.

 5.4.

5.5.

 5.6.

5.7.

 5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

 

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

Задача 6. Найти пределы, используя эквивалентные бесконечно-малые.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.


Задача 7. Найти пределы, используя эквивалентные бесконечно малые.

7.1.

 7.2.

7.3.

 7.4.

7.5.

 7.6.

7.7.

 7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

Задача 8. Найти пределы, используя эквивалентные бесконечно малые.

8.1.

 8.2.

8.3.

 8.4.

8.5.

 8.6.

8.7.

 8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

8.27.

8.28.

8.29.

8.30.

Задача 9. Используя формулы второго замечательного предела и его следствий, найти пределы функций.

9.1.

9.2.

9.3.

9.4.

9.5.

 9.6.

9.7.

 9.8.

9.9.

 9.10.

9.11

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

9.20.

9.21.

9.22.

9.23.

9.24.

9.25.  (a, b>0)

9.26.

9.27.

9.28.

9.29.

9.30.

Задача 10. Используя правило Лопиталя и эквивалентность, найти следующие пределы.

10.1. a)

б)

10.2. а)

б)

10.3. а)

б)

10.4. а)

б)

10.5. а)

б)

10.6. а)

б)

10.7. а)

б)

10.8. а)

б)

10.9. а)

б)

10.10. а)

б)

10.11. а)

б)

10.12. а)

б)

10.13.

б)

10.14.

б)

10.15. а)

б)

10.16. а)

б)

10.17. а)

б)

10.18. а)

б)

10.19. а)

б)

10.20. а)

б)

10.21. а)

б)

10.22. а)

б)

10.23. а)

б)

10.24. а)

б)

10.25. а)

б)

10.26. а)

б)

10.27. а)

б)

10.28. а)

б)

10.29.

б)

10.30.

б)

Задача 11. Применяя формулу Тейлора, вычислить пределы.

11.1

11.2.

11.3.

11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20

11.21.

11.22.

11.23.

11.24.

11.25.

11.26.

11.27.

11.28.

11.29.

11.30.


Задача 12. Найти точки разрыва, уравнения асимптот и построить схематично график функции.

12.1. а)

б)

 

12.2. а)

б)

 

12.3. а)

б)

 

12.4. а)

б)

 

12.5. а)

б)

 

12.6. а)

б)

 

12.7. а)

б)

 

12.8. а)

б)

12.9. а)

б)

12.10. а)

б)

12.11. а)

б)

12.12. а)

б)

12.13. а)

б)

12.14. а)

б)

12.15. а)

б)

12.16. а)

б)

12.17. а)

б)

12.18. а)

б)

12.19. а)

б)

12.20 .а)

б)

12.21. а)

б)

12.22. а)

б)

12.23. а)

б)

12.24. а)

б)

12.25. а)

б)

12.26. а)

б)

12.27. а)

б)

12.28. а)

б)

12.29. а)

б)

12.30. а)

б)

§ 4.2 Индивидуальное домашнее задание по теме: «Производная и ее применение»

Задача 1. Найти первую производную функции:


Задача 2. Найти первую производную функции:

2.1.  2.2.  

2.3.  2.4.

2.5.  2.6.

2.7.  2.8

2.9.  2.10.

2.11.  2.12.

2.13.  2.14.

2.15.  2.16.

2.17.  2.18.

2.19.

2.20.

2.21.

2.22.

2.23.  

2.24.

2.25.

2.26.

2.27.  

2.28.

2.29.

2.30.

Задача 3. Найти первую производную функции:

3.1.  3.2.  

3.3.  3.4.  

3.5.  3.6.

3.7.  3.8.

3.9.  3.10.  3.11.  3.12.

3.13.  3.14.

3.15.  3.16.

3.17.  3.18.

3.19.  3.20.

3.21.  3.22.

3.23.  3.24.

3.25.  3.26.  

3.27.  3.28.

3.29.  3.30.

Задача 4. Найти первую производную функции:

4.1.  4.2.

4.3.  4.4.  

4.5.  4.6.

4.7.  4.8.

4.9.  4.10.

4.11.  4.12.

4.13.  4.14.  

4.15.  4.16.

4.17.  4.18.

4.19.  4.20.

4.21.  4.22.

4.23.  4.24.  

4.25.  4.26.

4.27.  4.28.

4.29.  4.30.

Задача 5. Найти первую производную функции:

5.1.  5.2.

5.3  5.4.

5.5.  5.6.

5.7.  5.8.

5.9.  5.10.

5.11. 5.12.

5.13. 5.14.

5.15.  5.16.

5.17.  5.18.

5.19.  5.20.

5.21.  5.22.

5.23  5.24.

5.25.  5.26.

5.27.  5.28.

5.29.  5.30.

Задача 6. Найти первую производную функции:

6.1.  6.2.  

6.3.  6.4.

6.5.  6.6.

6.7.  6.8.

6.9.  6.10.  

6.11.  6.12.

6.13.  6.14.

6.15.  6.16.

6.17.  6.18.  

6.19.  6.20.

6.21.  6.22.

6.23.  6.24.

6.25.  6.26.  

6.27.  6.28.

6.29.  6.30.

Задача 7. Найти п-ую производную функции:

7.1.

7.11.

7.12.

7.13.

7.14.

7.16.

7.17.

 7.19.

7.20.

7.22.

7.24.

7.25.

7.26.

 

7.28.

7.29.

7.30.

Задача 8. С помощью формулы Лейбница найти указанную производную данной функции:

 

 

 

8.4.  

8.5.  

8.6.  

8.7.  

8.8.  

8.9.  

8.10.  

8.11.

8.12.  

8.13.  

8.14.  

8.15.  

8.16.  

8.17.  

8.18.  

8.19.  

8.20.  

8.21.  

8.22.

8.23.  

8.24.  

8.25.  

8.26.  

8.27.  

8.28.  

8.29.  

8.30.

Задача 9. Найти первую и вторую производные от функции у(х), заданной неявно:

9.1.  9.2.

9.3.  9.4.  

9.5.  9.6.

9.7.  9.8.  

9.9.  9.10.  

9.11.  9.12.

9.13.  9.14.

9.15.  9.16.

9.17.  9.18.

9.19.  9.20.  

9.21.  9.22.

9.23.  9.24.  

9.25.  9.26.  

9.27.  9.28.

9.29.  9.30.

Задача 10. Найти первую и вторую производные от функции у(х), заданной параметрически:

10.1.  10.2.

10.3.  10.4.  

10.5.  10.6.

10.7.  10.8.  

10.9.  10.10.

10.11.  10.12.  

10.13.  10.14.  

10.15.  10.16.  

10.17.  10.18.

10.19.  10.20.  

10.21.  10.22.

10.23.  10.24.  

10.25.  10.26.

10.27.  10.28.  

10.29.  10.30.  

Задача 11. Используя геометрический смысл производной, решить следующую задачу:

11.1 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=4х – х2, равна квадрату абсциссы точки касания.

11.2 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у=1 – х2/4, равна расстоянию от точки касания до начала координат.

11.3 Через произвольную точку кривой ху = 4 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.

11.4 Через произвольную точку кривой ху = х+2 проведена касательная. Доказать, что касательная пересекает прямую у = 1 в точке с абсциссой, равной удвоенной абсциссе точки касания.

11.5 Доказать, что площадь треугольника, образованного касательной к кривой у = 2/(1 – х),ординатой точки касания и осью абсцисс равна 1.

11.6 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=3хlnx+5x, равна утроенной абсциссе точки касания.

11.7 Через произвольную точку кривой у = а х3 проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 2/3 абсциссы точки касания.

11.8 Через произвольную точку кривой у=х2 + 2/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 3.

11.9 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=5х –2 х2, равна удвоенному квадрату абсциссы точки касания.

11.10 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у= х2/2 – 1/2, равна расстоянию от точки касания до начала координат.

11.11 Через произвольную точку кривой ху =


Информация о работе «Р.Т. Галусарьян. Сборник задач и упражнений по курсу "Высшая математика"»
Раздел: Математика
Количество знаков с пробелами: 31653
Количество таблиц: 12
Количество изображений: 5

0 комментариев


Наверх