11.12 Через произвольную точку кривой ху=2х+3 проведена касательная. Доказать, что касательная пересекает прямую у = 2 в точке с абсциссой, равной удвоенной абсциссе точки касания.
11.13 Доказать, что площадь треугольника, образованного касательной к кривой , ординатой точки касания и осью абсцисс равна 2.
11.14 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой , равна удвоенной абсциссе точки касания.
11.15 Через произвольную точку кривой у = 3х4 проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 3/4 абсциссы точки касания.
11.16 Через произвольную точку кривой у = х2 + 18/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 27.
11.17 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у= –3х2–1, равна утроенному квадрату абсциссы точки касания.
11.18 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у=1/8 – 2х2, равна расстоянию от точки касания до начала координат.
11.19 Через произвольную точку кривой ху = 8 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.
11.20 Через произвольную точку кривой проведена касательная. Доказать, что касательная пересекает прямую в точке с абсциссой, равной удвоенной абсциссе точки касания.
11.21 Доказать, что площадь треугольника, образованного касательной к кривой у = 8/(2 – х),ординатой точки касания и осью абсцисс равна 4.
11.22 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=хlnx+9x, равна абсциссе точки касания.
11.23 Через произвольную точку кривой проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 4/5 абсциссы точки касания.
11.24 Через произвольную точку кривой у=3х2 + 8/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 12.
11.25 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у = 3х – х2/2 равна половине квадрата абсциссы точки касания.
11.26 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой , равна расстоянию от точки касания до начала координат.
11.27 Через произвольную точку кривой ху = 12 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.
11.28 Через произвольную точку кривой ху+4х=2 проведена касательная. Доказать, что касательная пересекает прямую в точке с абсциссой, равной удвоенной абсциссе точки касания.
11.29 Доказать, что площадь треугольника, образованного между касательной к кривой у = 10/(4 – х),ординатой точки касания и осью абсцисс равна 5.
11.30 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=0,5хlnx+2x, равна половине абсциссе точки касания.
Задача 12. Найти наибольшее и наименьшее значение функции на данном отрезке:
12.1. 12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.
12.10.
12.11.
12.12.
12.13.
12.14.
12.15.
12.16 12.17.
12.18.
12.19.
12.20.
12.21.
12.22.
12.23.
12.24.
12.25.
12.26.
12.27.
12.28.
12.29.
12.30.
Задача 13. Исследовать функцию и построить график:
13.1. а) , б)
13.2. а) , б)
13.3. а) , б)
13.4. а) , б)
13.5. а) , б)
13.6. а) , б)
13.7. а) , б)
13.8 а) , б)
13.9. а) , б)
13.10. а) , б)
13.11. а) , б)
13.12. а) , б)
13.13. а) , б)
13.14. а) , б)
13.15. а) , б)
13.16. а) , б)
13.17. а) , б)
13.18. а) , б)
13.19. а) , б)
13.20. а) , б)
13.21. а) , б)
13.22. а) , б)
13.23. а) , б)
13.24. а) , б)
13.25. а) , б)
13.26. а) , б)
13.27. а) , б)
13.28. а) , б)
13.29. а) , б)
13.30. а) , б)
Глава 5. Семинарские занятия
§ 5.1 Cеминар: Применение производной при исследовании функции
Основные вопросы
1. Признаки монотонности функции.
2.Необходимое условие существования экстремума.
3. Критические точки на экстремум.
4. Достаточные условия существования экстремума.
5. Наибольшее и наименьшее значение функции на отрезке.
6. Выпуклость и вогнутость графика функции.
7. Точки, критические на перегиб.
8. Необходимое и достаточное условия существования перегиба.
9. Асимптоты графика функции.
Задания для семинара
№1 Доказать монотонность функции на всей числовой оси:
а) , б) ,
в) , г) .
№2 При каких а функции монотонны всюду:
а), б) .
№3 Найти интервалы монотонности и экстремумы функций:
а) , б) ,
в) , г) .
№4 С помощью 2-го достаточного условия существования экстремума исследовать поведение функции в указанной точке хо:
а) ,
б) ,
в) ,
г) .
№5 Найти экстремумы, точки перегиба. Построить график.
а) , б) .
№6 Определить выпуклость или вогнутость графика функции в окрестности указанных точек:
а) ,
б) .
№7 Найти асимптоты и построить график: а) ,
б) .
№8 Найти наибольшее и наименьшее значение функции на заданном отрезке:
а) , б) .
Задания для самостоятельной работы
№9 Доказать монотонность функции на всей числовой оси:
а) , б) , в) .
№10 При каких а функции монотонны всюду:
а), б) .
№11 Найти интервалы монотонности и экстремумы функций:
а) , б) ,
в) .
№12 С помощью 2-го достаточного условия существования экстремума исследовать поведение функции в указанной точке хо:
а) ,
б) ,
в) ,
г) .
№ 13 Найти экстремумы, точки перегиба. Построить график.
а) , б) .
№ 14 Определить выпуклость или вогнутость графика функции в окрестности указанных точек:
а) ,
б) .
№ 15 Найти асимптоты и построить график:
а) , б) .
№16 Найти наибольшее и наименьшее значение функции на заданном отрезке:
а), б) .
Ответы
2. а) ; б) при , при .
3. а) при, при ,
;
б) ;
в)
;
г) )
4. а) , б) , в) нет экстремума, г) хо не является критической точкой.
5. а) ,
; б) , ,.
6. а)- выпуклый график, -вогнутый; б) - выпуклый график, -вогнутый.
7. а) - вертикальные асимптоты, наклонная асимптота, ; б) горизонтальная асимптота, в) .
8. а) ; б) .
10. a) , в) .
11. а) , б) , в) .
12. а) , б) , в) нет экстремума, г) хо не является критической точкой.
13. а) нет точек экстремума,
б)
14. а)- выпуклый график, -вогнутый; б) - вогнутый график, - выпуклый.
15. а) горизонтальные асимптоты, ;
б) .
16. а) , б)
§ 5.2 Семинар: Неопределенный интеграл
Вопросы к семинару:
1. Первообразная и неопределенный интеграл.
2.Таблица интегралов. Вычисление неопределенных интегралов с помощью таблицы интегралов.
3. Нахождение интегралов методом компенсирующего множителя или введением под знак дифференциала.
4. Нахождение интегралов с помощью замены.
5. Метод интегрирования по частям.
Таблица простых интегралов
( х – независимая переменная)
Таблица интегралов сложных функций
Формула интегрирования по частям
Таблица выбора функции U(x)
1 | |
2 | |
3 |
Правила применения таблицы:
1. Если подынтегральное выражение является произведением функций из разных строк таблицы, то за U принимается функция, стоящая в таблице выше. Оставшееся выражение принимается за dV. При этом, выбирая U , следует всегда заботиться о том, чтобы dV было легко интегрируемым.
2. Если же подынтегральное выражение будет произведением функций из одной строки, то за U можно принять любую из этих функций. При этом интегрирование по частям, как правило, применяют дважды и получают равенство - уравнение, в котором неизвестным является искомый интеграл.
Задания для семинара
№1 Вычислить с помощью таблицы интегралов
а), б) ,
в), г) .
№2 Найти интегралы методом компенсирующего множителя или введением под знак дифференциала
а), б) , в), г),
д) ,
е) ,
ж) ,
з) ,
и) .
№3 (Устно) Найти интегралы
а), б), в), г),
д) ,
е) ,
ж) , з) .
№4 Найти интегралы с помощью замены переменной:
а), б), в), г).
№5 Найти интегралы методом интегрирования по частям:
а) , б) , в) , г) . д) е) , ж)
Задания для самостоятельной работы
№6 Вычислить с помощью таблицы интегралов
а) ,
б) ,
в) , г) .
№7 Найти интегралы методом компенсирующего множителя или введением под знак дифференциала
а) б), в) ,
г), д), е), ж),
з), и) , к) .
№8 Найти интегралы методом интегрирования по частям:
а) , б) , в), г),
д)е). b)
Ответы к гл. 33.1 1) 24, 2) п(п+1)(п+2), 3) , 4) , 5)336, 6) 120, 7) 4950, 8) .
3.2 1) 6;11, 2) 5, 3) 7, 4) 5, 5) 4, 6) 13, 7) 2;3;4;5;6;7;8;9, 8) 5;6;7;8;9;10.
3.3 3) Доказательство.
.
4) Доказательство. Используем равенство, доказанное в предыдущем номере. Имеем:
3.4 96. 3.5 А)125, б) 24. 3.6 350. 3.7 1605. 3.8 968.3.9 720. 3.10. а)
б) в)
г)
. 3.11. 1) +3; -3, 2) +2; -2, 3)-2; 0, 4) 0; 2.
3.12 1) 3.14. 2) Доказательство. Для п=1 неравенство верно , т.к. . Пусть неравенство верно для всех номеров п от 1 до к. Докажем, что оно верно и для п = к +1. Имеем:
3.14. 5) Т.к. , и 48>36, то неравенство верно для п =2. Пусть оно верно для всех . Докажем, что оно верно и для п = к + 1. Имеем:
, что и требовалось.
3.16 Т.к. , то целое и, следовательно, для п = 2 предложение выполняется. Пусть оно выполняется для всех . Докажем, что оно выполняется и для п = к + 1. Имеем:
, что и требовалось.
3.18 1)
2)
.
3.19 1) 0,2594, 2) 2,2359 , 3) 2,547.
3.20 1)—132—42i , 2) 23—5i , 3) 18+i , 4) 5) 2i—3,
3.21
3.22
7) –i;--2—i, 8)-1-i;-3-i, 9) 3-3i ;3i-1, 10)3+i;1-2i, 11)-i;1 +2i.
3.23.
,
3.24
3.25
3.26.
3.27.
3.28.
.
Ответы к ИДЗ: Пределы и непрерывностьВариант 1. 1. 0. 2. -3. 4. -2. 5. 0. 6. 4. 7. . 8. 7. 9. . 10 а. 4. 10б. 1. 11. -1/6. Вариант 2. 1. . 2. -1/2. 4. 5/4. 5. 0. 6. . 7. . 8. . 9. . 10 а. 0. 10б. 1. 11. -1/6
Вариант 3. 1. 0. 2. -3. 4. -2. 5. 0. 6. 4. 7. . 8. 7. 9. . 10 а. 4. 10б. 1. 11. –1/6. Вариант 4. 1. -3/2. 2. 0. 4. 3. 5. -2/3. 6. -16. 7. . 8. . 9. e-1/2. 10 а. 1. 10б. . 11. 4.
Вариант 5. 1. . 2. 1/2. 4. 3/2. 5. . 6. 1/4. 7. -1/8. 8. -1/2. 9. 1/e. 10 а. 0. 10б. 1. 11. -3/128.
Вариант 6. 1. 5/2. 2. 3. 4. -1. 5. 0,6. 6. -1. 7. 1/4. 8. 2(1-ln3)/9 . 9. . 10 а. . 10б. 1. 11. -13/40.
Вариант 7. 1. . 2. -1/5. 4. 2. 5. 0. 6. -2e. 7. -2ln2 8. (-5/2)ln2. 9. . 10 а. -1/2. 10б. 1. 11. -1/72.
Вариант 8. 1. 0. 2. 2/3. 4. 3. 5. 0. 6. -1/6. 7. . 8. 5ln3-7ln2. 9. 2e. 10 а. 2/3. 10б. 1. 11. -3/4.
Вариант 9. 1. 0. 2. 4/3. 4. 0. 5. 2,4. 6. . 7. -2/3π. 8. 2. 9. 3/7. 10 а. -1/2. 10б. 1. 11. -3/4.
Вариант 10. 1. . 2. -1. 4. 0. 5. 0. 6. -2/3. 7. 0. 8. . 9. 1. 10 а. . 10б. e3. 11. -4.
Вариант 11. 1. 1/2. 2. 1/2. 4.-3. 5. 4. 6. -1/2e. 7. 8. 8. ln700. 9. . 10 а. 1/64. 10б. . 11. -1.
Вариант 12. 1. . 2. 11/18. 4. 0. 5. 1,5, 6. 2/5. 7. π/8. 8. 3.
9. . 10 а. 0. 10б. 1. 11. 11/18.
Вариант 13. 1. 3. 2. 1. 4. -1/3. 5. . 6. -10. 7. . 8. 4. 9. . 10 а. 0. 10б. 0. 11. -13.
Вариант 14. 1. 0. 2. 1/8. 4. 3. 5. . 6. 1/π. 7. .
8. ln25/8. 9. . 10 а. 1. 10б. 1. 11. -1/3.
Вариант 15. 1. 4. 2. 1/6. 4. -2/3. 5. -4/3. 6. 3/8. 7. .
8. 7ln2-5ln3. 9. 1/e. 10 а. 1. 10б. 1. 11. -0,3.
Вариант 16. 1. 1. 2. 1/6. 4. . 5. 1/4. 6. . 7. -8. 8. 3-ln2. 9. 1/5. 10 а. 1/6. 10б. 1. 11. -11/24.
Вариант 17. 1. 2. 2. 1/15. 4. -1. 5. -1/2. 6. . 7. -2. 8. -9. 9. . 10 а. -1/3. 10б. 1. 11. -1.
Вариант 18. 1. 1. 2. 1/5. 4. -2/5. 5. -1/2. 6. . 7. . 8. 5ln4-2ln9. 9. . 10 а. . 10б. 1. 11. -3.
Вариант 19. 1. -2. 2. -3. 4. 1/3. 5. 4/3. 6. -1/4. 7. . 8. ln12+3ln5. 9. 9. 10 а. 2. 10б. 1. 11. 1/12
Вариант 20. 1. 1. 2. -1. 4. 3. 5. . 6. . 7. 0. 8. . 9. . 10 а. 1. 10б. . 11. 1/16
Вариант 21. 1. 1. 2. 3/2. 4. 1/3. 5. 5/2. 6. -2/3. 7. 1/2. 8. 6. 9. . 10 а. -2. 10б. 1. 11. -1.
Вариант 22. 1. 1. 2. 5/2. 4. 2. 5. 1. 6. 7/2. 7. . 8. 5. 9. e21/2. 10 а. 0. 10б. 0. 11. -8/3
Вариант 23. 1. -2. 2. -7/2. 4. 2. 5. 1/3. 6. 1/12. 7. . 8. . 9. . 10 а. -2. 10б. е. 11. -8/16
Вариант 24. 1. 2. 2. 5/4. 4. -9. 5. -1/3. 6. -3. 7. 2ln23. 8. 2ln42. 9. e-4/9. 10 а. 1. 10б. . 11. -1/4.
Вариант 25. 1. 2. 2. . 4. -7/8. 5. 2/27. 6. -5/3. 7. . 8. -1. 9. . 10 а. 0. 10б. 1. 11. -5
Вариант 26. 1. -1. 2. 2/3. 4. -5/8. 5. -11/4. 6. 1/8. 7. . 8. 2. 9. e-3 . 10 а. -1/2 . 10б. 1. 11. 2.
Вариант 27. 1. -1. 2. 5/4. 4. 10/3. 5. 9/2. 6. 50. 7. . 8. . 9. e1/3. 10 а. -1/3. 10б. 1. 11. 2.
Вариант 28. 1. -3/2. 2. 3. 4. 3/2. 5. -1/8. 6. -1. 7. . 8. . 9. e2. 10 а. 5/8. 10б. 1. 11. -2
Вариант 29. 1. 2. 2. 1/12. 4. 3/2. 5. 2/3. 6. 3/2. 7. . 8. -5/4. 9. . 10 а. . 10б. . 11. -27/4.
Вариант 30. 1. . 2. . 4. 0. 5. . 6. 6. 7. . 8. 2ln7-3. 9. . 10 а. . 10б. 1. 11. .
Литература
1. Берман Г.Н. Сборник задач по курсу математического анализа.М.: Наука, 1997.
2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.
3.. Виноградова И.А, Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу.М.: Наука, 1986.
4. Кузнецов Л.А. Сборник заданий по высшей математике. М.: Высшая школа, 1990.
5. Сборник индивидуальных заданий по высшей математике, ч. 1, Под ред. А.П. Рябушко. Минск: Высшая школа, 1990.
6. Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Высшая школа, 1990.
7. Апатенок Р.Ф., Маркина А.М., Хейман В.Б. Сборник задач по линейной алгебре и аналитической геометрии.Минск: Высшая школа, 1990.
8. Галусарьян Р.Т. Введение в математический анализ. Обнинск: ИАТЭ, 2002.
9. Галусарьян Р.Т. Методические рекомендации и варианты контрольных работ по математическому анализу. Обнинск: ИАТЭ, 1998.
Редактор О.Ю. Волошенко
Компьютерная верстка Р.Т.Галусарьян
ЛР № 020713 от 27.04.98
Подписано к печати Формат бумаги 60х84/16
Печать ризограф, Бумага KYMLUX Печ. л 5
Заказ N Тираж 50 экз. Цена договорная
Отдел множительной техники ИАТЭ, 249040, г. Обнинск, Студгородок,1
0 комментариев