3. Абсолютное изменение стоимости продукции определяется по формуле
- абсолютное изменение стоимости продукции за счет изменения выпуска продукции
тыс. руб.;
- абсолютное изменение стоимости продукции за счет изменения цен;
тыс. руб;
что и соответствует ранее полученной цифре.
Задача 2. Определить, как изменились в среднем отпускные цены на продукцию, если количество произведенной продукции в отчетном периоде по сравнению с базисным увеличилось на 8,0%, а общая стоимость продукции уменьшилась на 5,0%.
Решение
Для определения индекса цен используется взаимосвязь между тремя индексами:
или 97,2%. Следовательно, отпускные цены на продукцию снижены в среднем на 2,8%.
6. ВОПРОСЫ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО СТАТИСТИКЕ
1. Современная организация статистики. Задачи органов статистики в условиях рыночных отношений.
2. Статистическое наблюдение. Основные организационные формы статистического наблюдения.
3. Виды статистического наблюдения.
4. Организация статистической отчетности. Специальные статистические наблюдения. Ошибки наблюдения.
5. Задачи группировок. Виды группировок: типологические, структурные, аналитические.
6. Группировочные признаки, их сущность и значение.
7. Важнейшие группировки и классификации, применяемые в статистике.
8. Ряды распределения. Их виды, назначение и использование.
9. Абсолютные величины и их значение в статистическом исследовании. Виды абсолютных величин, единицы измерения.
10.Виды относительных величин, способы их расчета и формы
выражения.
11.Виды средних и способы определения их величин.
12.Выборочное наблюдение - основные приема расчета ошибок.
13.Задачи статистического изучения вариации. Основные показатели
вариации.
14.Виды дисперсии. Правило сложения дисперсий.
15.Понятие о рядах динамики и их значение.
16.Основные правила построения рядов динамики.
17.Виды зависимостей между факторами. Показатели регрессии.
18.Аналитические модели зависимости между факторами.
19.Анализ рядов динамики.
20. Аналитические приемы обработки рядов динамики.
21.Понятие об индексах. Значение индексов в анализе социально-
экономических явлений.
22.Классификация индексов.
23.Индивидуальные и общие индексы.
24.Агрегатный индекс как основная форма общего индекса.
25.Средний арифметический и гармонический индексы.
26.Система взаимосвязей индексов.
27.Индексы постоянного, переменного состава и структурных
сдвигов.
28.Базисные и цепные индексы, их взаимосвязь.
7. ТЕСТЫ ПО СТАТИСТИКЕ (теория статистики)
Абсолютные, относительные и средние величины
1. В прошлом году себестоимость производства изделия А составила 70,0 тыс. руб. По плану отчетного года предусматривалось снизить себестоимость на 1400 руб., фактическая себестоимость составила 68,2 тыс. руб.
Определить относительные величины планового задания по снижению себестоимости и динамики себестоимости производства изделия А.
а) 0,98; 0,974
б) 0,95; 0,087
в) 0,78; 1,657
г) 1,89; 0,675
2. Планом предусмотрено увеличение объема продукции предприятия против прошлого года на 2,1%. Фактически прирост продукции против прошлого года составил 4,8%.
Определить процент выполнения плана по выпуску продукции.
а) 100%
б) 106,5%
в) 102,6%
г) 101,1%
3. Планом предусмотрено снижение затрат на один рубль товарной продукции на 4,0%; фактически по сравнению с прошлым годом затраты возросли на 1,8%.
Определить, на сколько процентов фактические затраты на один рубль товарной продукции отличаются от плановых.
а) Меньше на 5,6%
б) Больше на 2,3%
в) Больше на 6,04%
г) Одинаковые
4. Автобус на междугородной линии протяженностью 625 км прошел путь в прямом направлении со скоростью 68 км/ч, в обратном направлении - со скоростью 52 км/ч.
Определить среднюю скорость сообщения за оборотный рейс.
а) 65,0 км/ч
б) 70,0 км/ч
в) 42,0 км/ч
г) 59,0 км/ч
5. Цехом произведены бракованные детали в трех партиях: в первой партии - 90 шт., что составило 3,0% от общего числа деталей; во второй партии - 140 шт., или 2,8%; в третьей партии - 160 шт., или 2,0%.
Определить средний процент бракованных деталей.
а) 10%
б) 16,5%
в) 2,6%
г) 2,44%
Статистические распределения1. Средняя величина в совокупности равна 15, среднее квадратическое отклонение равно 10. Чему равен средний квадрат индивидуальных значений этого признака?
а) х2 = 325
б) х2 = 453
в) х2 = 342
г) х2 = 352
2. Дисперсия признака равна 360 000, коэффициент вариации равен 50%. Чему равна средняя величина признака?
а) х = 2300
б) х = 1200
в) х = 1150
г) х = 1250
3. Дисперсия признака равна 25, средний квадрат индивидуальных значений равен 125. Чему равна средняя?
а) 20
б) 14
в) 10
г) 15
4. Определить дисперсию признака, если средняя величина признака равна 2600 единицам, а коэффициент вариации равен 30%.
а) s2 = 608 400
б) s2 = 700 609
в) s2 = 800 978
г) s2 = 409 600
5. По совокупности, состоящей из 100 единиц, известны:
1) средняя арифметическая - 47,0;
2) сумма квадратов индивидуальных значений признака - 231 592.
Определить, достаточно ли однородна изучаемая совокупность.
а) n = 33,0% неоднородна
б) n = 22,0% однородна
в) n = 24% однородна
г) n = 22,2% неоднородна
Выборочное наблюдение1. В АО «Прогресс» работает 3000 человек. Методом случайной бесповторной выборки обследовано 1000 человек, из которых 820 выполняли и перевыполняли дневную норму выработки.
Определить: 1) долю рабочих, не выполняющих норму выработки, по данным выборочного обследования; 2) долю всех рабочих акционерного общества, не выполняющих норму (с вероятностью 0,954).
а) 1)0,18 ;2)0,18 +/-0,02
б) 1) 2,2 ; 2) 2,22 +/- 0,03
в) 1)1,2; 2) 1,1 +/- 0,1
г) 1) 1,27; 2) 1,1 +/- 0,1
2. Из партии изготовленных изделий общим объемом 2000 единиц проверено посредством механической выборки 30% изделий, из которых бракованными оказались 12 изделий.
Определить: 1) долю бракованных изделий по данным выборки; 2) пределы, в которых находится процент бракованных изделий, для всей партии (с вероятностью 0,954).
а) 1)0,03 или 3% 2)3,0 +/- 0,96
б) 1)0,02 или 2% 2) 2,0 +/- 0,96
в) 1) 0,01 или 1% 2) 4,0 +/- 0,96
г) 1) 0,05 или 5% 2) 7,0 +/- 0,96
... соответственно; q1, q2 - объем отчетного, базисного периодов соответственно) для величины (цены) по каждому виду товара для величины q (объема) по каждому виду товаров: Найдем общие индексы по формулам: представляет собой среднее значение индивидуальных индексов (цены, объема), где j – номер товара. Общий индекс товарооборота равен: Найдем абсолютное ...
... экономико-рыночных отношений в нашей стране ставит перед школой новые задачи. Умение анализировать, сравнивать различные ситуации необходимо на сегодняшний день каждому современному человеку. Элективный курс «Общая теория статистики» с помощью математического аппарата даст начальные понятия о статистике, которые необходимы при решении управленческих задач. Курс рассчитан для учащихся 11 класса ...
0 комментариев