Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
«Вятский государственный гуманитарный университет»
Физико-математический факультет
Кафедра дидактики физики и математики
Выпускная квалификационная работа
"Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике"
Киров, 2008
Содержание
Введение
1. Требования к вычислительным умениям и навыкам учащихся
1.1 Понятие математических навыков
1.2 Требования к вычислительным умениям и навыкам
1.3 Устные вычисления как основа повышения вычислительной культуры школьников
2. Методика повышения вычислительной культуры школьников
2.1 Организация устных вычислений учащихся
2.2 Приемы устных вычислений, основанные на законах и свойствах арифметических действий
2.3 Приемы устных вычислений, основанные на изменении результата действий в зависимости от изменения компонентов
2.4 Систематизация приемов повышения вычислительной культуры для практической работы учителя
2.5 Содержание и анализ опытно-экспериментальной работы
Заключение
Библиографический список
Введение
Развитие общества требует постоянного улучшения качества обучения, трудового и нравственного воспитания учащихся. Поэтому, важнейшей задачей обучения математике является обеспечение прочного и сознательного овладения учащимися математическими знаниями и умениями, нужными в повседневной жизни и в работе каждого члена современного общества.
В связи с этим необходимо подчеркнуть роль вычислительной подготовки учащихся в системе общего образования. Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, является фундаментом изучения математики и других учебных дисциплин. Кроме того, вычисления активизируют память учащихся, их внимание, стремление к рациональной организации деятельности и прочие качества, оказывающие существенное влияние на развитие учащихся.
Однако, во время проведения в ходе педагогической практики пробных уроков, и наблюдений за уроками математики, которые проводили мои однокурсники, и которые проводила я сама, из беседы с учителями математики можно сделать вывод о том, что уровень навыков вычислений и тождественных преобразований у учащихся резко снизился: они плохо и нерационально считают, кроме того, при вычислениях все чаще прибегают к помощи технических средств – калькуляторов.
Еще одна проблема современных учащихся, которая напрямую связана с вычислительной культурой, – нерациональность вычислений. Нужно обучать школьников не только выбирать и осуществлять рациональный путь выполнения упражнений и решения задачи, но и рационально записывать то или иное решение.
Из выше сказанного следует, что существует необходимость более тщательного рассмотрения этого раздела частной методики преподавания математики. Возникает потребность в ознакомлении учащихся с дополнительными приемами устных и письменных вычислений, которые позволили бы значительно сократить время, потраченное на вычисления и запись решения, и избежать использования различных вычислительных средств.
Таким образом, цель выпускной квалификационной работы: разработать методику повышения вычислительной культуры учащихся средствами использования приемов быстрого счета.
Для реализации этой цели необходимо решить следующие задачи:
1) ознакомиться с проблемой изучения вычислительной культуры учащихся;
2) изучить основные особенности математических и вычислительных навыков;
3) рассмотреть различные приемы быстрого счета как способа решения изучаемой проблемы;
4) рассмотреть применение их на уроках и внеклассных занятиях по математике;
5) разработать методическое пособие «Упражнения для быстрого счета», которое поможет учителям в проведении устного счета на уроках математики;
6) проверить эффективность предложенной методики в опытном преподавании.
Объектом исследования является процесс обучения математике в основной школе. Предмет исследования – формирование и развитие вычислительной культуры учащихся средствами системы упражнений для быстрого счета.
В ходе анализа методической литературы была сформулирована гипотеза исследования: использование приемов быстрого счета на уроках и внеклассных занятиях по математике позволит повысить вычислительную культуру учащихся.
При реализации поставленной цели и доказательстве предложенной гипотезы мы использовали следующие методы исследования: беседы с учителями, анализ психолого-педагогической и методической литературы, наблюдение, сравнительный анализ, опытное преподавание.
Работа состоит из введения, двух глав, раскрывающих основное содержание, заключения и библиографического списка. Работа также содержит приложение в форме учебно-методического пособия для обучения школьников приемам быстрого счета.
Одной из основных задач преподавания курса математики в школе является формирование у учащихся сознательных и прочных вычислительных навыков.
Вычислительные навыки – важная составляющая математических навыков. Поэтому для начала нужно рассмотреть их общее понятие. Большая часть математических навыков – это сложные навыки, формирующиеся на основе других умений и навыков. Так, навык сложения дробей с разными знаменателями основан на умении находить наименьшее общее кратное двух натуральных чисел, применять основное свойство дроби при приведении дробей к общему знаменателю, складывать дроби с одинаковыми знаменателями. В свою очередь каждые из указанных умений и навыков также имеют сложную структуру. Отсутствие какого-либо из элементарных умений и навыков служит причиной несформированности сложного навыка.
Общеизвестно, что умения и навыки быстрее усваиваются и дольше сохраняются, если их формирование происходит на сознательной основе (дидактический принцип сознательности). Тренировки без достаточного понимания изучаемого редко приводят к прочным умениям и навыкам. Поэтому формированию навыков учащихся должно предшествовать понимание ими сути изучаемого действия.
Формирование математических навыков состоит из следующих этапов:
1. Первый этап формирования навыка – овладение умением. При овладении умением в вычислениях или тождественных преобразованиях первые упражнения на применение нового приема, метода, определения должны выполняться с подробными объяснениями и записями. Так, при изучении деления рациональных чисел следует подробно разъяснять смысл нового действия, алгоритм его выполнения. Подробные разъяснения и записи помогают ученикам лучше понять смысл и последовательность выполнения изучаемого действия. Именно поэтому на этом этапе при формировании вычислительных навыков предпочтительнее использовать письменные вычисления. Но процесс формирования навыка не ограничивается овладением умением.
2. Второй этап – этап автоматизации умения. Автоматизация умения происходит путем исключения некоторых промежуточных операций, сложные ассоциации заменяются прямыми (или спрямленными) ассоциациями от данных к искомому. Так, если умение реализуется по схеме, А→В→С, где В - промежуточное действие, то навык – чаще всего по прямой схеме А→С. Поэтому следует помочь ученикам перейти от сложной схемы действий к более простой. Это означает, что после выполнения первых упражнений надо добиваться свертывания промежуточных операций, для чего полезно часть преобразований выполнять мысленно, опуская промежуточные записи. При формировании вычислительных навыков на этом этапе используют письменные вычисления с промежуточными устными.
Актуальным является методическое требование выполнять устно вычисления и преобразования не только во время так называемых пятиминуток устного счета. При решении любых задач, на каждом этапе урока все вычисления и выкладки, которые ученики могут выполнять устно, должны быть устно и выполнены. И дело не только в том, что на лишние записи тратится драгоценное время урока. Гораздо хуже то, что учащихся с самого начала приучают не думать при вычислениях, а только применять стандартный алгоритм, что в дальнейшем приводит ко многим нерациональным решениям, к новым большим потерям учебного времени, к слабо развитым вычислительным умениям и навыкам. Привычка выполнять устно несложные вычисления и выкладки нередко порождает потребность производить мысленные эксперименты при решении задач, высказывать догадки, предположения о путях решения более сложных задач, мысленно (устно) проверяя истинность предположений. А это одно из главных условий обучения решению математических задач. Кроме того, по мере овладения навыками целесообразно не только опускать промежуточные записи, стремиться выполнять часть вычислений и преобразований устно, но и переписывать выражения после преобразований не одного, а 2–3 отдельных выражений, входящих в состав сложного выражения, что также сокращает записи и время решения задач.
Несколько слов нужно сказать и о проблеме рациональности в вычислениях. В требование рационального выполнения вычислений и преобразований включается как выбор и осуществление рационального пути выполнения упражнений и решения задач, так и их рациональная запись.
Выбору рационального пути решения всегда предшествует анализ данного для вычисления или преобразования выражения, выявление порядка заданных операций, мысленный эксперимент («Если поступить так, то получится то-то, а если иначе-то… Какой путь проще?»). На этой основе составляется план вычислений, преобразований. Обдуманное составление плана существенно помогает выбору рационального пути решения. Рациональное же решение – способ развития мышления учащихся, формирования высокоразвитых, осмысленных умений и навыков, свидетельствующий о бережном отношении учителя к учебному времени учащихся. Рассмотрение различных вариантов преобразования одного и того же выражения и выбор наиболее рационального – один из путей обучения рациональным решениям.
Рациональное выполнение вычислений и тождественных преобразований требует нестандартных решений, следовательно, служит формированию более прочных умений и навыков. Задача учителя систематически обращать внимание школьников на рационализацию вычислений и преобразований.
Форма записи решения задач может иметь немалое значение в формировании навыков. Не следует рекомендовать единую форму записи решения на всех этапах обучения, в процессе отработки умений и навыков форма записи вычислений и тождественных преобразований должна, как правило, упрощаться.
Таким образом, подчеркнув особенности математических навыков, можно переходить к рассмотрению частного случая – вычислительным навыкам.
1.2 Требования к вычислительным умениям и навыкамО наличии у учащихся вычислительной культуры можно судить по их умению производить устные и письменные вычисления, рационально организовывать ход вычислений, убеждаться в правильности полученных результатов.
В зависимости от сложности задания на практике используются три вида вычислений: письменное, устное и письменное с промежуточными устными вычислениями.
Качество вычислительных умений определяется знанием правил и алгоритмов вычислений. Поэтому степень овладения вычислительными умениями зависит от четкости сформулированного правила и от понимания принципа его использования. Умение формируется в процессе выполнения целенаправленной системы упражнений. Очень важно владение некоторыми вычислительными умениями доводить до навыка.
Вычислительные навыки отличаются от умений тем, что выполняются почти бесконтрольно. Такая степень овладения умениями достигается в условиях целенаправленного их формирования. Образование вычислительных навыков ускоряется, если учащемуся понятен процесс вычислений и их особенности [3].
При обучении вычислениям и совершенствовании техники счета необходимо отчетливо представлять, какие умения и навыки у учащихся необходимо сформировать. Перечислим наиболее важные из них.
В письменных вычислениях данные числа, знаки арифметических действий, промежуточные и окончательные результаты записываются. Поскольку качество записей оказывает существенное влияние на успех вычисления, то учащимся необходимо владеть следующими навыками:
· отчетливо писать математические символы (цифры, знаки препинания, знаки арифметических действий);
· цифры и знаки располагать строго в соответствии с правилами арифметических действий;
· безошибочно применять таблицы сложения и умножения натуральных чисел.
При устных вычислениях надо помнить данные числа и законы действий над ними. При этом формирование навыков устных вычислений связано с выработкой навыка запоминания чисел, выявления особенностей отдельных чисел.
Правила и приемы вычислений не зависят от того, выполняются они письменно или устно. Однако владение навыками устных вычислений представляет большую ценность не только потому, что в быту ими пользуются чаще, чем письменными выкладками, но и потому, что они ускоряют письменные вычисления, позволяют усовершенствовать их. Наличие у учащихся навыков устного счета влияет на степень отработки у них рациональных и безошибочных вычислительных умений. Например, без навыков устного использования таблиц сложения и умножения невозможно в совершенстве овладеть умениями в выполнении арифметических действий.
Для того чтобы овладеть умениями, предусмотренными программой, учащемуся достаточно уметь устно:
· складывать и умножать однозначные числа;
· прибавлять к двузначному числу однозначное;
· вычитать из однозначного или двузначного числа однозначное (преимущественно из числа, меньшего 20);
· складывать несколько однозначных чисел;
· складывать и вычитать двузначные числа;
· делить однозначное или двузначное число на однозначное нацело или с остатком;
· производить действия (на основе знаний правил) с дробными числами.
Как в письменных, так и в устных вычислениях используются разнообразные правила и приемы. Умения в применении правил арифметических действий с многозначными числами, и учащиеся приобретают в начальной школе. Поэтому уровень, вычислительных навыков определяется систематичностью закрепления ранее усвоенных приемов вычислений и приобретением новых в связи с изучаемым материалом.
В 1–4 классах учащиеся обучаются выполнению арифметических действий над натуральными числами. При этом должны быть выработаны прочные навыки письменного сложения, вычитания и умножения двух-трехзначных чисел, а также деления чисел на одно- и двузначное число, что предполагает знание наизусть таблиц сложения и умножения однозначных чисел. Формирование навыков письменных вычислений, а в простейших случаях, и устных, следует довести до уровня, обеспечивающего беглое и безошибочное выполнение вычислений [6].
В 5–6 классах учащиеся овладевают навыками вычисления с натуральными и целыми числами, с обыкновенными и десятичными дробями. При этом алгоритмы вычислений с двух-трехзначными числами должны быть отработаны с учащимися до автоматизма; учащиеся должны свободно производить в уме арифметические действия в пределах сложности примеров и умножение двузначного числа на однозначное, на сложение двух дробей в простейших случаях. Все вычисления должны производиться достаточно бегло; их включение в выполнение более сложных вычислений не должно затруднять учащихся [6].
В 7–9 классах обобщаются и систематизируются сведения о действительных числах, развиваются и закрепляются вычислительные навыки. При этом не следует ослаблять внимание к поддержанию достаточно высокого уровня техники вычислений и повышению уровня вычислительной культуры учащихся (рационализация вычислений, их организация, применение приближенных вычислений). Эта задача должна решаться путем последовательного увеличения доли вычислений при изучении основного материала курса. Вычислительные навыки учащихся должны получить дальнейшее развитие при изучении вопросов, связанных с приближенными вычислениями, где, помимо дальнейшей отработки вычислительных алгоритмов, должны быть сформированы навыки прикидки и оценки результатов вычислений. По мере усвоения учащимися вычислительных алгоритмов и расширения объема сведений о числовых функциях существенно увеличивается объем и сложность вычислительных работ, что требует привлечения таблиц и математических инструментов (калькулятора) [6].
Вычислительным навыкам, как и любым другим, необходимо учить. Качество вычислительных умений и навыков определяется знанием правил и алгоритмов вычислений. Поэтому степень овладения вычислительными умениями зависит от четкости сформулированного алгоритма и от понимания принципа его использования. Очень важно владение некоторыми вычислительными умениями доводить до навыка. Что нужно сделать для этого учителю?
... и младших школьников. Анкета для студентов включала в себя два вопроса, один из которых о том, в чем, по их мнению, заключается развитие математических способностей школьников, а второй ¾ для выяснения отношения студентов к проведению внеклассной работы по математике в начальных классах. Анкета для преподавателей имела своей целью выяснить, проводят ли (а если проводят, то как часто) учителя ...
... курс «Решение уравнений и неравенств с использованием свойств функций» Глава II. Разработка элективного курса «Решение уравнений и неравенств с использованием свойств функций» §1. Методические основы разработки элективного курса Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и ...
... виртуальными объектами. Реализация этого принципа основывается на использовании творческих сред, таких как, например, Лого, Кумир, Роботландия [11]. Глава 2. Методика использования дистанционных технологий как средство развития алгоритмической культуры школьников на уроках информатики 2.1 Возможности использования дистанционных технологий на уроках информатики Дистанционное обучение – ...
... при ошибке в его выборе, учитывать по уровневый подход. 4. Математика должна входить в набор обязательных учебных предметов любого из профилей.2 МАТЕМАТИЧЕСКИЙ ФАКУЛЬТАТИВ КАК ВЕДУЩАЯ ФОРМА ПРОФИЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЕ2.1. Организационно-педагогические условия успешного функционирования математических факультативов Еще на рубеже XIX и XX вв. некоторые ...
0 комментариев