5.         Разбиение.

Операция разбиения на попарно непересекающееся подмножества характеризуются следующими свойствами:

1)            ни одно из подмножеств не пусто;

2)            любые два подмножества не имеют общих элементов;

3)            объединение всех подмножеств дает данное множество.

Операция деление натуральных чисел опирается на разбиение конечного множества на попарно непересекающиеся равномощные подмножества. Она раскрывается путем рассмотрения задач на деление по содержанию и равные части. Это можно осуществить на примере таких работ.

Пример № 1. Несколько карандашей надо раздать трем ученикам. Сколько карандашей получит каждый ученик и сколько их было?

Сначала раздадим по одному карандашу, потом еще по одному и так далее. Пусть каждый ученик получил по 4 карандаша, тогда всего карандашей было: 4 кар. х 3 =12 кар.

Пример № 2. Несколько карандашей надо раздать детям по 4 карандаша. Сколько учеников получит карандаши и сколько их было всего?

Сначала 4 карандаша дали одному ученику, потом 4 карандаша дали второму и так далее. Пусть 3 ученика получили по 4 карандаша, тогда всего карандашей было : 4 кар. х 3 = 12 кар.

Затем учитель должен обобщить полученные результаты: «В первой задаче мы искали первый сомножитель, а во второй задаче мы искали второй сомножитель. Так как умножение обладает переместительным свойством, то мы выполнили в обеих задачах одну и ту же операцию, которая называется делением». После этого учитель записывает:

4 х 3 = 12; 12 3 = 4;

4 х 3 = 12, 12 4 = 3.

2. Величина

Понятие величины является фундаментальным в школьном курсе математики и, в особенности, в начальном обучении. Ведь исторически работа с величинами и привела к появлению математики как таковой. Рассматривая величину как свойство однородных предметов или явлений «быть сравнимым», учитель может с помощью конкретных предметных действий сформировать у учащихся такие важнейшие понятия, как положительное действительное число, операции над числами и их законы, измерение величин и именованные числа, тесно связать геометрический и арифметический материал.

Величины бывают трех видов: скалярные, аддитивно-скалярные, векторные.

Примером скалярных величин является свойство химических элементов быть сравнимыми по активности. Так, натрий более активен, чем железо. Однако, сказать, на сколько он более активен нельзя, то есть нельзя выполнить операцию сложения: к активности железа нельзя, например, добавить активность свинца и получить активность натрия поэтому скалярные величины не являются той основой, на которой возникла математика.

Аддиктивно-скалярные величины (аддитивность – это наличие операции сложения; аддитивная операция – операция сложения) можно не только сравнивать, но и определять, на сколько один элемент множества, обладающего величиной, больше (меньше) другого элемента этого же множества.

Таким образом, аддитивно-скалярные величины можно складывать и поэтому именно на их основе возникла в результате абстрагирования математика. Примером аддитивно-скалярных величин является множество отрезкой, площадей.

Векторные величины можно сравнивать не только с позиции «столько», «больше». «меньше», но и по направлению. Примерами векторных величин является скорость, ускорение.

В начальных классах специальным предметом изучения являются следующие аддитивно-скалярные величины: количество, длина, площадь, масса, емкость, время.

В дальнейшем, для упрощения, вместо того, чтобы говорить «аддитивно-скалярная величина», или «множество, обладающее величиной», будем говорить просто «величина».

Рассмотрим основные свойства величин.

1. Свойство быть сравнимым.

Это свойство должно формироваться в начальных классах в три этапа на основе предметных действий детей.

а) Визуальное сравнение.

Приведем примеры практических работ.

Пример 1. (рис. 2.6). Приложив полоски, выяснить, какие из них длиннее (рис. 2.6).

Пример 2. Наложив друг на друга два листа бумаги, выяснить, какой из них больше (рис. 2.7).


Рис. 2.7

Пример 3. Взяв в одну руку деревянный шар, а другую металлический шар, определить, какой из них тяжелее (шары одинаковые по размеру).


Пример 4. Сравнить два ведра одинаковой формы и ответить, в какое из них больше поместиться воды (рис. 2.8).


Рис. 2.8

б) Опосредованное сравнение.

Пример 1. Ученикам предлагается сравнить длины двух отрезков, изображенных на доске; определить по рисунку в книге, кто из детей живет ближе к школе.

Чтобы ответить на поставленный вопрос, используются две веревочки. Ими измеряют длины, а затем наложением сравнивают.

Пример 2. Ученикам предлагается сравнить массы двух тел, с этой целью используются рычажные весы.

2). Сравнение с помощью посредников.

Пример 1. Учащимся предлагается сравнить расстояние Евпатория – Симферополь, Евпатория – Киев.

Пример 2. Ученикам предлагается сравнить две площади разной конфигурации (рис. 2.9).


Рис. 2.9


Пример 3. Ученикам предлагается сравнить возраст своих родителей.

В каждом случае ученики придут к выводу, что ни визуально, ни опосредовано провести сравнение невозможно. Они сделают вывод о том, что величины необходимо сначала измерить, а потом сравнить числа, полученные в результате измерения. Тем самым ученики подводятся к пониманию причины возникновения числа.


Информация о работе «Роль умственного приема классификации в формировании математических понятий у младших школьников»
Раздел: Педагогика
Количество знаков с пробелами: 178753
Количество таблиц: 14
Количество изображений: 16

Похожие работы

Скачать
160951
1
0

... и умения, но и определенный социальный статус. Меняются интересы, ценности ребенка, весь уклад его жизни. 3. Комплекс педагогических условий формирования умений учебной деятельности младших школьников Успех педагогической деятельности в значительной мере зависит от характера сложившихся взаимоотношений между учителем и обучаемыми. Анализ и обобщение психолого-педагогических исследований по ...

Скачать
96845
9
0

... , и целенаправленная работа, связанная с отработкой орфографических навыков в процессе ежедневного повторения.ЗАКЛЮЧЕНИЕИсследование проблемы «Роль долговременной памяти в формировании орфографического навыка» убедило нас в том, что она имеет свои сложности. Эти сложности вызваны тем, что младший школьник имеет свои психологические особенности, связанные с сохранением материала в памяти и его ...

Скачать
124754
11
0

... : Цели, принципы, задачи Содержание Методы, формы, средства Условия Результаты Цель   Основу для становления и развития ответственного отношения к природе, формирование экологически воспитанной личности младших школьников составляет содержание учебных предметов начальной школы: ознакомление с окружающим миром, естествознание, география, ОБЖ и т.д. Они ...

Скачать
113771
6
2

... , если оно вводится целенаправленно, осознанно, с учетом характера материала, сравниваемых объектов, возраста и уровня развития школьников. РАЗДЕЛ 2. ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПО ФОРМИРОВАНИЮ УМСТВЕННОГО ПРИЕМА СРАВНЕНИЯ У МЛАДШИХ ШКОЛЬНИКОВ В ПРОЦЕССЕ ИЗУЧЕНИЯ МАТЕМАТИКИ 2.1. Методика по развитию и формированию сравнения у младших школьников в процессе изучения математики ...

0 комментариев


Наверх