1.4 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:


Получается система из (n+1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .


,

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.5 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

- абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

- относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

- вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

- среднее число занятых каналов (k);

- среднее число заявок в СМО ();

- среднее время пребывания заявки в системе ();

- среднее число заявок в очереди () – длина очереди;

- среднее число заявок в системе ();

- среднее время пребывания заявки в очереди ();

- среднее время пребывания заявки в системе ()

- степень загрузки канала (), т.е. вероятность того, что канал занят;

- среднее число заявок, обслуживаемых в единицу времени;

- среднее время ожидания обслуживания;

- вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

 (1.5.1)

 (1.5.2)

Формулы (1.5.1) и (1.5.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.

Таблица 1.

Показатели Одноканальная СМО с ограниченной очередью Многоканальная СМО с ограниченной очередью
Финальные вероятности

,

Вероятность отказа

Абсолютная пропускная

способность

Относительная пропускная способность

Среднее число заявок в очереди

Среднее число заявок под обслуживанием

Среднее число заявок в системе


Информация о работе «Имитационное моделирование системы массового обслуживания»
Раздел: Информатика, программирование
Количество знаков с пробелами: 48014
Количество таблиц: 3
Количество изображений: 9

Похожие работы

Скачать
46164
1
11

... очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,'. именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые ...

Скачать
8274
0
8

... (с 17 до 22 часов)время суток. Следовательно при одном и том же количестве каналов обслуживания, в ночное время вероятность занятости канала будет меньше, чем в дневное. Особенностью этой модели системы массового обслуживания является отсутствие очереди. Если в момент совершения заявки свободных каналов не оказалось, то она покидает систему: то есть если клиент не дозванивается, то и факт ...

Скачать
12393
4
2

... лабораторной работе, входит: 1. Анализ зависимости влияния экзогенных переменных модели однофазной одноканальной СМО на эндогенные переменные. 2. Построение плана машинного эксперимента на основе множественного регрессионного анализа и метода наименьших квадратов. 3.Моделирование системы массового обслуживания В качестве объекта моделирования рассматривается однофазная одноканальная система, ...

Скачать
20467
0
10

... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...

0 комментариев


Наверх