Расчет и выбор посадок

Основы взаимозаменяемости
Основные понятия и определения Взаимозаменяемость гладких цилиндрических деталей Обозначение полей допусков, предельных отклонений и посадок на чертежах Расчет и выбор посадок Рассчитывается необходимое усилие при запрессовке собираемых деталей по формуле Точность формы и расположения Отклонения и допуски расположения Зависимый и независимый допуск формы и расположения Неуказанные допуски формы и расположения Волнистость поверхности Допуски на угловые размеры. Взаимозаменяемость конических соединений Взаимозаменяемость резьбовых соединений Допуски и посадки резьб с зазором Допуски резьб с натягом и с переходными посадками Система допусков для цилиндрических зубчатых передач [50] Плавность работы передачи Боковой зазор Обозначение точности колес и передач Взаимозаменяемость шлицевых соединений Допуски и посадки шлицевых соединений с эвольвентным профилем зубьев Метод расчета размерных цепей, обеспечивающий полную взаимозаменяемость Теоретико-вероятностный метод расчета размерных цепей Метод групповой взаимозаменяемости при селективной сборке [50]
177067
знаков
15
таблиц
2
изображения

2.2.4. Расчет и выбор посадок

Выбор различных посадок для подвижных и неподвижных соединений можно производить на основании предварительных расчетов, экспериментальных исследований или ориентируясь на аналогичные соединения, условия работы которых хорошо известны.

Посадки с зазором. Рассмотрим один из вариантов расчета посадки подшипника скольжения.

Известно, что при гидродинамическом режиме работы масляный клин в подшипнике скольжения возникает только в области определенных зазоров между цапфой вала и вкладышем подшипника. Поэтому задачей настоящего расчета является нахождение оптимального расчетного зазора и выбор по нему стандартной посадки.

Рассмотрим упрощенный метод расчета и выбора посадок, изложенный в [10].

Толщина масляного слоя в месте наибольшего сближения поверхностей отверстия и вала ,

где S – диаметральный зазор;  - относительный эксцентриситет;

е – абсолютный эксцентриситет вала в подшипнике при зазоре S.

Принципиальный график зависимости толщины масляного слоя от величины зазора S приведен на рис.2.7.

Как видно из рис.2.7, определенной толщине масляного слоя соответствуют два зазора. Например, [hmin] соответствуют зазоры [Smin] и [Smax]. Допустимая минимальная толщина масляного слоя, при которой еще обеспечивается жидкостное трение:

[hmin] = K×(RZD+RZD+gg) =

=K×(4RaD+4Rad+gg),

где К³2 – коэффициент запаса надежности по толщине масляного слоя; gg – добавка на неразрывность масляного слоя (gg = 2 - 3 мкм).

Поэтому необходимо соблюдать условие

h ³ [hmin], Smin ³ [Smin], (2.1)

где [Smin] – минимальный допустимый зазор, при котором толщина масляного слоя равна допустимой [hmin].

Относительный эксцентриситет хmin, соответствующий зазору Smin, из-за возможности возникновения самовозбуждающихся колебаний вала в подшипнике рекомендуется принимать не менее 0,3, т.е. xmin ³ 0,3.

Для определения х используем полученную в [10] зависимость

, (2.2)

где w - угловая скорость вала, рад/с; СR – коэффициент нагруженности подшипника; P – среднее удельное давление (Па),

.

Здесь Fr – радиальная нагрузка на цапфу, Н; l, dH.C. – длина подшипника и номинальный диаметр соединения, м; m - динамическая вязкость смазочного масла при рабочей температуре tn (H×с/м2),

, (2.3)

где tи – температура испытания масла (50°С или 100°С);  – динамическая вязкость при tи = 50oC (или 100оС); n – показатель степени, зависящий от кинематической вязкости масла n (табл.2.2).

Таблица 2.2

Значения показателей степени n в уравнении (2.3)

n50 20 30 40 50 70 90 120
n 1,9 2,5 2,6 2,7 2,8 2,9 3,0

Обозначив , из формулы (2.2) получим

 . (2.4)

На рис. 2.8 приведены зависимости А от х и отношения l/dH.C. Для определения хmin необходимо по формуле (2.4) определить Аh, соответствующее [hmin]:

.

По рис. 2.8 можно определить хmin – относительный эксцентриситет, соответствующий зазору [Smin]; хопт и Аопт – относительный зазор и параметр А, соответствующие оптимальному зазору Sопт, при котором толщина масляного слоя достигает своего наибольшего значения h/ (см.рис.2.7); Ах – значение параметра А при х = 0,3.

Минимальный допустимый зазор

,

где Кj - коэффициент, учитывающий угол охвата (табл.2.3).

Максимальный допустимый зазор при h = [hmin]

.

Таблица 2.3

Коэффициенты, учитывающие угол охвата

Угол охва-та j Отношение l/dНС
0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,5 2,0
360 0,896 0,913 0,921 0,932 0,948 0,963 0,975 0,982 0,990 1,009 1,033 1,083
180 1 1 1 1 1 1 1 1 1 1 1
120 0,958 0,921 0,908 0,907 0,891 0,872 0,860 0,852 0,829 0,821 0,814

При выборе посадки необходимо выполнить условие

Smax £ [Smax]. (2.5)

При этом

,

где - поправка, связанная с различием коэффициентов линейных расширений материалов вала и втулки или существенным различием температур соединенных деталей, . Здесь aD, ad – коэффициенты линейного расширения втулки и вала; DtD, Dtd - разность между рабочей и нормальной (200С) температурами; - поправка, связанная с наличием неровностей на поверхностях вала и втулки, =8×(RaD + Rad ); Тизн – допуск на износ.

Величина допуска на износ может задаваться числовым значением, рассчитанным по требуемой долговечности подшипника, или определяться по предписанному коэффициенту запаса точности КТ:

,

где .

При выборе посадки необходимо использовать дополнительное условие, по которому средний зазор SC в посадке должен быть примерно равен оптимальному Sопт:

.

Если при выборе посадки не удается выполнить условия (2.1) и (2.5), то следует произвести проверку правильности выбора посадки теоретико-вероятностным методом, определив для этого вероятностные зазоры:

;

.

При невыполнении условий  и  необходимо

провести повторный расчет.

Рекомендации по применению некоторых посадок с зазором. Посадку Н5/h4 (Smin= 0 и Smax = Td +Td) назначают для пар с точным центрированием и направлением, в которых допускается проворачивание и продольное перемещение деталей при регулировании. Эти посадки можно использовать вместо переходных (в том числе для сменных частей). Для вращающихся деталей их применяют только при малых скоростях и нагрузках.

Посадку Н6/h5 назначают при высоких требованиях к точности центрирования (например, пиноли в корпусе задней бабки токарного станка, измерительных зубчатых колес на шпинделях зубоизмерительных приборов), посадку Н7/h6 (предпочтительную) — при менее жестких требованиях к точности центрирования (например, сменных зубчатых колес в станках, корпусов под подшипники качения в станках, автомобилях и других машинах, поршня в цилиндре пневматических инструментов, сменных втулок кондукторов и т. п.). Посадку Н8/h7 (предпочтительную) назначают для центрирующих поверхностей, когда можно расширить допуски на изготовление при несколько пониженных требованиях к соосности.

Посадки Н5/g4; Н6/g5 и Н7/g6 (последняя предпочтительная) имеют наименьший гарантированный зазор из всех посадок с зазором. Их применяют для точных подвижных соединений, требующих гарантированного, но небольшого зазора для обеспечения точного центрирования (например, золотника в пневматической сверлильной машине, шпинделя в опорах делительной головки, в плунжерных парах и т. п.).

Для подвижных посадок наиболее распространены Н7/f7 (предпочтительная), Н8/f8 и подобные им посадки, образованные из полей допусков квалитетов 6, 8 и 9.

Посадки Н7/е8, Н8/е8 (предпочтительные), Н7/е7 и посадки, подобные им, образованные из полей допусков квалитетов 8 и 9, обеспечивают легкоподвижное соединение при жидкостной смазке. Их применяют для быстровращающихся валов больших машин.

Посадки Н8/d9, Н9/d9 (предпочтительные) и подобные им посадки, образованные из полей допусков квалитетов 7, 10 и 11, применяют сравнительно редко. Например, посадку Н7/d8 используют при большой частоте вращения и малом давлении в крупных подшипниках, а также в сопряжении поршень — цилиндр в компрессорах, посадку Н9/d9 — при невысокой точности механизмов.

Посадки Н7/c8 и Н8/с9 характеризуются значительными гарантированными зазорами, используются для соединений с невысокими требованиями к точности центрирования. Наиболее часто эти посадки назначают для подшипников скольжения (с различными температурными коэффициентами линейного расширения вала и втулки), работающих при повышенных температурах (в паровых турбинах, двигателях, турбокомпрессорах, турбовозах и других машинах, в которых при работе зазоры заметно уменьшаются вследствие того, что вал нагревается и расширяется больше, чем вкладыш подшипника).

При выборе посадок (на основе расчета) необходимо учитывать отношение l/d: чем меньше это отношение, тем меньше должен быть наименьший зазор.

Переходные посадки. Переходные посадки Н/js, Н/k, Н/m, Н/n используют в неподвижных разъемных соединениях для центрирования сменных деталей или деталей, которые при необходимости могут передвигаться вдоль вала. Эти посадки характеризуются малыми зазорами и натягами, что, как правило, позволяет собирать детали при небольших усилиях (вручную или с помощью молотка). Для гарантии неподвижности одной детали относительно другой соединения дополнительно крепят шпонками, стопорными винтами и другими крепежными средствами.

Переходные посадки предусмотрены только в квалитетах 4 - 8. Точность вала в этих посадках должна быть на один квалитет выше точности отверстия.

В переходных посадках при сочетании наибольшего предельного размера вала и наименьшего предельного размера отверстия всегда получается наибольший натяг, при сочетании наибольшего предельного размера отверстия и наименьшего предельного размера вала — наибольший зазор.

Посадки с натягом. Посадки с натягом предназначены в основном для получения неподвижных неразъемных соединений без дополнительного крепления деталей. Иногда для повышения надежности соединения дополнительно используют шпонки, штифты и другие средства крепления, как, например, при креплении маховика на коническом конце коленчатого вала двигателя. Относительная неподвижность деталей обеспечивается силами сцепления (трения), возникающими на контактирующих поверхностях вследствие их деформации, создаваемой натягом при сборке соединения.

Рассмотрим общий случай расчета посадок с натягом, когда соединение состоит из полого вала и втулки (рис. 2.9). Разность между диаметром вала и внутренним диаметром втулки до сборки определяет натяг N. При запрессовке деталей происходит растяжение втулки на величину ND и одновременно сжатие вала на величину Nd, причем N = ND + Nd. Из зада-чи определения напряжений и перемещений в толстостен

A

 
ных полых цилиндрах (задачи Ламе) известны зависимости ND = p×C1/E1; Nd = p×C2/E2. Cложив почленно эти равенства и выполнив простые преобразования, получаем

N = p×dНС×[(С1/E1) + (C2/E2)],

где N — расчетный натяг; р — давление на поверхности контакта вала и втулки, возникающее под влиянием натяга; dНС — номинальный диаметр сопрягаемых поверхностей; Еd и ЕD – модули упругости материалов соответственно охватываемой (вала) и охватывающей (отверстия) деталей, Па; Сd и CD –коэффициенты Ламе, определяемые по формулам

; ,

где d1 – диаметр отверстия полого вала, м; d2 – наружный диметр охватывающей детали, м; md и mD – коэффициенты Пуассона соответственно для охватываемой и охватывающей деталей. Для сплошного вала (d1 = 0) Cd = 1 - md; для массивного корпуса (d2® ∞) CD = 1 + mD.

Расчет посадок с натягом производят в следующем порядке:

1.         По значениям внешних нагрузок – осевой силы, крутящего момента (Fa, TK) и размерам соединения (dH.C, l) определяется требуемое минимальное давление (Па) на контактных поверхностях соединения:

при действии ТК ;

при действии Fa ;

при действии ТК и Fa ,

где Fa – продольная осевая сила, стремящаяся сдвинуть одну деталь относительно другой, Н; ТК – крутящий момент, стремящийся повернуть одну деталь относительно другой, Н×м; l – длина контакта сопрягаемых поверхностей, м; f - коэффициент трения при установившемся процессе распрессовки или проворачивания (табл.2.4).


Таблица 2.4

Коэффициенты трения для материалов

Материал сопрягаемых деталей Коэффициент трения
Сталь – сталь 0,06 – 0,13
Сталь – чугун 0,07 – 0,12
Сталь – латунь 0,05 – 0,1
Сталь пластмассы 0,15 – 0,25

2.         По полученным значениям [Pmin] определяется необходимое значение наименьшего расчетного натяга Nmin (м), который должен обеспечить передачу крутящего момента и осевой силы:

.

3. Определяется величина минимального допустимого натяга с учетом поправок к , то есть

,

где gш – поправка, учитывающая смятие неровностей контактных поверхностей деталей при образовании соединения;

gш = 1,2 (Rzd + RzD) = 5 (Rad + RaD),

где gt – поправка, учитывающая различие рабочей температуры деталей (tD и td) и температуры сборки (tсб), различие коэффициентов линейного расширения материалов соединяемых деталей (aD и ad),

 ;

gц – поправка, учитывающая ослабление натяга под действием центробежных сил (существенна для крупных быстровращающихся деталей); для сплошного вала и одинаковых материалов соединяемых деталей

.

Здесь V – окружная скорость на наружной поверхности втулки, м/с; r - плотность материала. Поправка gц для стальных деталей диаметром до 500 мм, вращающихся со скоростью до 30 м/с, не учитывается; gn – добавка, компенсирующая уменьшение натяга при повторных запрессовках, определяется опытным путем.

3.         Определяется максимальное допустимое удельное давление [Pmax], при котором отсутствует пластическая деформация на контактных поверхностях деталей. В качестве Pmax берется наименьшее из двух значений

; ,

где sТd и sТD – предел текучести материалов охватываемой и охватывающей деталей.

4.         Устанавливается наибольший расчетный натяг (м)

 

5.         Определяется величина максимального допустимого натяга, при котором не произойдет разрушения деталей, с учетом поправок к :

,

где gуд – коэффициент увеличения удельного давления у торцов охватывающей детали, принимается по графику (рис.2.10); gt – температурная поправка, учитываемая, если при рабочей температуре натяг увеличивается.

6.         Выбирается посадка из таблиц системы допусков и посадок [10] с соблюдением следующих условий: максимальный натяг Nmax в подобранной посадке должен быть не больше [Nmax], т.е. Nmax £ [Nmax]; минимальный натяг

 Nmin в подобранной посадке должен быть больше [Nmin], т.е. Nmin > [Nmin].


Информация о работе «Основы взаимозаменяемости»
Раздел: Промышленность, производство
Количество знаков с пробелами: 177067
Количество таблиц: 15
Количество изображений: 2

Похожие работы

Скачать
19362
1
1

... которые могут быть у деталей, поступающих на сборку: δ ≥ Δобщ = Δт + Δук + Δх, где Δт - технологическая погрешность, возникающая в процессе изготовления деталей из пластмасс (например, литьем под давлением, прессованием); Δук – погрешность за счет технологических уклонов (Δук = 2H·tgα); Δх - погрешность, возникающая при хранении ...

Скачать
62041
2
5

... работы, а именно, рассмотреть методы и формы преподавания дисциплины «Основы взаимозаменяемости и стандартизации» на базе ВУЗа, мы решали ряд задач: 1.         Изучить и проанализировать литературу по дисциплине «Основы взаимозаменяемости и стандартизации, а так же изучение особенности методики преподавания технических дисциплин в педагогическом ВУЗе. 2.         Изучить структуру, функции и ...

Скачать
16175
3
0

... осуществления требуется большое число наименований измерительных приборов и его целесообразно применять только в индивидуальном и мелкосерийном производствах. Существование связей между погрешностями зубчатых колес и передач с дефектами технологического оборудования позволяет заменить прямой контроль точности изделий косвенным. Косвенный контроль заключается в контроле таких погрешностей станка ...

Скачать
23133
7
15

адкой. Ряд посадок на различные соединения деталей в машиностроении также стандартизован. Посадка ставится на рабочих чертежах деталей и узлов рядом с номинальными размерами сопряжения. В зависимости от требования к работе узла бывают посадки с зазором, переходные посадки, сочетающие зазор и натяг, и посадки с гарантированным натягом. В данной работе представлен расчет ряда посадок на наиболее ...

0 комментариев


Наверх