2.1 Расчет коллекторно-щеточного узла
Число щёткодержателей обычно равно числу главных полюсов.
Контактная площадь щёток одного щёткодержателя
(63)
где jщ – допускаемая плотность тока под щёткой, А/см2.
В зависимости от типа и характеристик щётокjщ = 9 ¸ 18 А/см2. (64)
По рекомендациям , выбираем щётку марки ЭГ74АФ. Допускаемое давление на щётку 15 ¸ 21 кПа, падение напряжения 2,3 В, jщ = 15 А/см2. Тогда
Наиболее важно правильно выбрать ширину щётки, которая влияет на ширину зоны коммутации, а последняя на степень использования активного слоя машины.
Из практики электромашиностроения установлено, что приемлемая величина щёточного перекрытия
(65)
где bщ – ширина щётки, мм.
Отсюдаbщ = g×tк. (66)
Обычно для тяговых двигателей
g = 2,5 ¸ 6. (67)
Принимаем g = 4, тогда
bщ = 4×4 = 16 мм.
Принимаем bщ = 16 мм.
Ширину зоны коммутации определяют по известной формуле
(68)
где eк – укорочение обмотки в коллекторных делениях;
t¢к – коллекторное деление, пересчитанное на окружность якоря, мм,
(69)
(70)
Подставляя численные значения, получаем:
Тогда подставляя численные значения в (68), получаем:
(71)
Выполняем щётку разрезной; принимаем стандартную ширину щётки по ГОСТ 12232-89; bщ = 2´25 мм.
Общая длина щёток одного щёткодержателя
(72)
Для уменьшения инерционности щёток, их чувствительности к вибрациям и геометрии коллектора щётки следует принимать меньшей длины и массы, поэтому их делят по длине на Nщ щёток. Принимаем Nщ = 2.
Намечаемая длина щётки
(73)
По ГОСТ 12232-89 принимаем ℓщ = 60 мм.
Плотность тока в щётке
(74)
Подставляя численные значения, получаем:
Полученная величина плотности тока в щётке входит в заданный диапазон для выбранной марки щётки, т. е. выбранная марка щётки удовлетворяет условию по коммутации.
Рабочая длина коллектора
(75)
где ℓ1 – толщина перемычки щёткодержателя между “окнами” щёток, ℓ1 = 4 мм;
rкр – радиус закругления краёв рабочей поверхности коллектора, rкр = 2 мм;
ℓ2 – допуск на осевое перемещение якоря, ℓ2 = 2 мм;
Подставляя численные значения, получаем:
Достаточность рабочей длины коллектора для его охлаждения оценивается по эмпирической формуле без учёта механических потерь
(76)
Подставляя численные значения, получаем:
Остальные размеры коллектора: ширину канавки у петушков для выхода шлифовального круга и фрезы для продорожки ℓкн и ширину петушков коллектора ℓпт принимают по опыту проектирования ТЭД: ℓкн = 10 мм; ℓпт = 20 мм.
Тогда общая длина коллекторных пластин
Lко = Lк + ℓкн + ℓпт , (77)
Подставляя численные значения, получаем:
Lко = 156 +10 + 20 = 186 мм.
... колеса , (1.12) где y – угол наклона зубьев при прямозубой передаче. Принимаю y = 0о; m – модуль зубчатого зацепления, принимаемый в зависимости от вращающего момента М и конструкции тяговой передачи. , (1.13) По эмпирическим формулам для прямозубых передач (1.14) где К – односторонняя передача. Принимаю К = 1, согласно [1]. Принимаем m = 10. Число зубьев ...
... . В режиме минимума предполагается, что напряжение источника питания повышается до максимального значения сети. Таблица 5. Расчет токов короткого замыкания тяговой подстанции Наименование Значение Обозначения и расчетные формулы параметры трансформатора Заводской допуск напряжения кз 0,05 Δuk Напряжение опыта кз, приходящееся на обмотку, % 10,75 uk,B=0,5 (uk,BH +uk,BC ...
... 60-х г. тепловозы заменили паровозную тягу на главных направлениях степных районов Украины, России, Казахстана и Сибири, а также в Средней Азии. I. Выбор основных параметров силовой установки и вспомогательного оборудования локомотива 1.1 Выбор основных параметров силовой установки Касательная сила тяги определяется из условия равномерного движения поезда с расчетной скоростью (Vр) на ...
... ЭД-118А. На выходах шеек напрессовывают лабиринтные кольца уплотнения циркуляционной системы смазки. 3. Выбор оборудования и его компоновка на тепловозе Для определения весогабаритных характеристик основных узлов и оборудования следует ориентироваться на аналогичные параметры тепловоза прототипа. Для выполнения развески используется схема расположения узлов и оборудования (рис. 11). Развеска ...
0 комментариев