2.   Модуль крупности 1,6 – 1,8

В данной работе для утилизации отходов собственного производства (4%) в качестве отощающей добавки используем шамот.

2.2 Характеристика топлива

Газообразное топливо отличается от жидкого и твердого рядом преимуществ, важнейшими из которых являются: легкое, удобное регулирование процесса горения и возможность полной механизации и автоматизации его, простота топливного хозяйства и оборудования; отсутствие золы при сжигании; лучшие санитарно-гигиенические условия труда, обслуживающего персонала.

В состав газообразного топлива входят горючая часть и балласт. Горючая часть представляет собой механическую смесь простейших горючих газов, таких как водород, метан, пропан, бутан и других газообразных углеводородов. Балластом являются негорючие газы, в том числе углекислый газ СО2, азот N2 и кислород О2. При добыче газа в его составе имеются также водяные пары, смолистые вещества, минеральная пыль. Однако перед подачей газа потребителям его очищают, в результате чего содержание примесей сводится к минимуму.

В данной работе используем топливо Угорского месторождения.

Таблица 2.6. Состав влажного (рабочего) газа, об%

Сумма
95,8 0,13 0,07 0,07 0,02 1,7 1,2 1,0 100

Теплота сгорания газа:  /5/.


3. Обоснование состава композиции

С целью получения необходимых технологических параметров продукции, составы шихт могут быть самые различные (см. табл. 3.1.).

Таблица 3.1. Некоторые шихтовые составы масс для производства керамического кирпича /3/.

Материалы Содержание, об.%

Глина

Опилки

86-93

7-14

Глина

Шамот

95

5

Глина

Опилки

Шамот

82-83

10

7-8

Глина

Шамот

Песок, зола

85-90

0-5

10-15

Глина

Дегидратированная глина

60

40

В производстве керамического кирпича используется глина Малоступкинского месторождения, она составляет основную часть шихты-84%. Поскольку эта глина имеет число пластичности 25 и является среднечувствительной к сушке, необходим ввод добавок. Для утилизации отходов собственного производства в качестве отощающей добавки вводится шамот – 4%. Для уменьшения числа пластичности глины вводится отощающая добавка (песок)- 4% и отощающая и выгорающая не полностью (зола)-8%.

Состав шихты:

Глина – 84% (об.),

Зола – 8% (об.),

Песок-4% (об.),

Шамот – 4% (об.).

Выбранный шихтовой состав позволяет выпускать керамический кирпич марки 100, но возможны партии, имеющие марки 75 или 150, который удовлетворяет ГОСТу 530-95 по всем требованиям.


4. Аналитический обзор научно – технической литературы и обоснование способа производства

Глины для производства кирпича добывают открытым способом в карьерах. Открытая разработка месторождений глин включает:

1. Подготовительные работы — удаление кустарников, пней, отвод вод, устройство дорожных покрытий;

2. Вскрышные работы — удаление растительного слоя и проведение выработок, обеспечивающих доступ к глинам;

3. Добычные работы — выемка глины из массива и погрузка ее на транспортные средства.

При проведении карьерных работ учитываются физико-механические свойства пород.

На большинстве глиняных карьеров применяется валовая добыча, при которой глину разрабатывают по всей мощности уступа, без выделения отдельных пластов сырья. В отдельных случаях используют селективную (послойную) добычу глин.

Выбор добычных механизмов зависит от принятого способа формования изделий, горногеологических условий залегания сырья, его физико-механических свойств и способа выемки. При вылеживании сырья добывать его можно любыми машинами, в том числе одноковшовыми экскаваторами и канатно-скреперными установками. Вылеживание сырья весьма целесообразно при любом методе разработки глин.

В данном проекте выбираем добычу сырья с помощью многоковшового экскаватора.

На глиняных карьерах широко применяют автомобильный, рельсовый и реже конвейерный транспорт. Автомобильный транспорт является наиболее простым, надежным и маневренным. При применении экскаваторов с невысокой производительностью весьма эффективны самосвалы грузоподъемностью до 10 т.

Совместно с экскаваторами высокой производительности целесообразно использовать большегрузные прицепы с тягачами. В отдельных случаях применяют конвейерный транспорт, создающий условия для непрерывной работы добычного оборудования. Однако при неблагоприятных атмосферных условиях намокшая глина прилипает к ленте конвейера, что затрудняет его работу. На ленточные конвейеры глина поступает через погрузочные бункера, емкость которых должна быть не менее 1, 5—2-кратной емкости ковша экскаватора.

В данном проекте для доставки глины с карьера, будем применять автомобильный транспорт, а точнее самосвалы. Данный выбор связан с тем, что этот вид транспорта наиболее прост в обслуживании и легко доступен.

При использовании рыхлых глин с невысокой карьерной влажностью применяют глинохранилище простейшего типа, которые представляет собой емкость длиной 40 м и объемом от 100 м3 до 10 тыс. м3 глины. После вылеживания сырье многоковшовыми экскаваторами подается в производство. Глинохранилища обеспечивают бесперебойное и ритмичное снабжение завода сырьем независимо от метеорологических условий. В тех случаях, когда глинистое сырье содержит много больших слипшихся или смерзшихся кусков, она разрыхляется глинорыхлителями /2/.

При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. При наличии рыхлых глин и глин средней плотности с влажностью не выше 23-25% применяют пластический способ переработки глин; для слишком плотных глин, плохо поддающихся увлажнению и обработке с низкой карьерной влажностью (менее 14-16%),-полусухой способ переработки.

Метод полусухого прессования предусматривает предварительное высушивание сырья, последующее измельчение его в порошок, прессование сырца в пресс-формах при удельных давлениях, в десятки раз превышающих давление прессования на ленточных прессах. Преимущества технологии полусухого прессования заключается в том, что спрессованный кирпич-сырец укладывается непосредственно на печные вагонетки и на них высушивается в туннельных сушилках, или же, минуя предварительную досушку, непосредственно поступает на обжиг. Комплексная механизация производства осуществляется проще, чем при методе пластического формования. Однако технология полусухого прессования требует более совершенной системы аспирации на трактах приготовления и транспортирование порошка, использования более высокопроизводительных прессов.

Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья.

При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 500С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку.

Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.

Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы /9/.

В данном проекте будем использовать схему производства изделий пластическим методом, поскольку используемая глина достаточно высокой влажности, среднепластичная.

Производство керамики должно быть обеспечено непрерывной подачей однородного глинистого материала, лишенного каменистых включений, имеющего разрушенную природную «структуру» для лучшего смачивания, сохраняющего достаточно постоянную влажность независимо от времени года и равномерно перемешенного с добавками. На керамических заводах сырьевые материалы подвергают грубому, среднему и мелкому дроблению, грубому и тонкому помолу. Обычно тонким помолом завершается механическое измельчение материалов, что обеспечивает более интенсивное их спекание, содействует снижению температуры обжига. Измельчение глинистых материалов проводят последовательно на вальцах грубого и тонкого измельчения. Каменистые включения не могут быть полностью выделены из глины общепринятыми механическими приемами – дезинтеграторными ребристыми вальцами. Опыт показывает, что при пользовании этими машинами в глине может остаться около половины (а иногда и более) камней. В дальнейшем эти камни будут в значительном своем количестве перемолоты гладкими вальцами или бегунами, что, однако, вызывает быстрый износ бандажей и частые ремонты. Бегуны мокрого помола используют при наличии в глинах трудноразмокаемых включений и для обработки плотных глин и глин, содержащих известковые включения. Предварительное (грубое) дробление непластичных твердых материалов в керамической технологии производят в щековых или конусных дробилках, работающих по принципу раздавливающего и разламывающего действия. Степень измельчения в щековой дробилке 3-10, а в конусной – 6-15. Среднее и мелкое дробление, грубый помол непластичных материалов выполняется с помощью бегунов, молотковых дробилок, валковых мельниц. Молотковая дробилка обеспечивает высокую степень измельчения (10-15), однако влажность дробимого материала не должна быть более 15%.

Подача и дозировка сырья на большинстве кирпичных заводов происходит при помощи ящичных питателей.

В настоящее время на многих керамических и кирпичных заводах широко применяется увлажнение глины паром. Этот способ состоит в том, что в массу подается острый пар, который при соприкосновении с холодной глиной конденсируется на ее поверхности. В результате пароувлажнения обрабатываемая масса нагревается до 45-60оС. Пароувлажнение имеет существенные преимущества, так как улучшается способность массы к формованию, что обуславливает уменьшение брака при формовке и повышение производительности ленточных прессов на 10-12%, снижение расхода электроэнергии на 15-20%. В результате пароувлажнения улучшаются сушильные свойства массы, что позволяет сократить продолжительность сушки сырца на 40-50%. Иногда производят дополнительную обработку керамической массы, которая осуществляется в вальцах тонкого помола, дырчатых вальцах или в глинорастирателе. Чтобы достичь однородности массы на кирпичных заводах её вылёживают, за время вылеживания масса также усредняется /9/.

На кирпичных заводах нашли наибольшее применение ленточные безвакуумные прессы и вакуум-прессы.

Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. При работе пресса наблюдают за влажностью и качеством бруса, качеством и регулярностью поступления массы, наличием смазки. Наибольшие зазоры между витками лопастного шнека и рубашкой допускаются 5 мм и между нагнетательным валком и витками лопастного вала — 10 мм. Необходимое разрежение в вакуум-камере создается вакуумным насосом. Глина поступает в глиномешалку и верхним шнеком продавливается через решетку в вакуум-камеру, где жгутики ее разрезаются ножами и масса обезвоздушивается. Затем масса захватывается нижним шнеком и продвигается им к головке пресса, где уплотняется и равномерно выходит из мундштука.

В процессе формования изделий контролируют разрежение в вакуум-камере пресса, состояние лопастей, шнека и мундштука, влажность и температуру бруса, размеры сырца и некоторые другие величины /2/.

В данном проекте выбираем вакуум-пресс, который обеспечивает наибольшую производительность, чем безвакуумные.

Непрерывно поступающий из пресса брус сырца разрезается отрезным устройством на куски требуемой длины (2,5 м). Отрезанный кусок бруса отделяется ускорительным транспортёром и подаётся на разрезное устройство, где он принимается транспортёром специальной конструкции. После подачи бруса на разрезное устройство, транспортёр останавливается, и находящийся на нём брус, разрезается на отдельные кирпичи путём опускания и подъёма разрезного устройства, в котором поперёк направления подачи бруса натянуты разрезные элементы (струны). После окончания операции разрезки транспортёр разрезного устройства начинает двигаться и кирпич сырец перегружается на следующий транспортёр раздвижного погрузочного устройства, причём, за счёт плавной регулировки скорости этого транспортёра кирпичи могут раздвигаться на требуемое расстояние. После передачи всех кирпичей на раздвижной транспортёр, он останавливается, и находящиеся на нем кирпичи толкателем сдвигаются в поперечном направлении на вагонетки, движущиеся прямо под транспортёром с такой же скоростью. Концы разрезанного бруса при этом остаются на раздвижном транспортере. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, отрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Таким образом кирпичи, группа за группой, поперечными рядами сажаются на вагонетку /6/.

Различают сушильные устройства для естественной и искусственной сушки сырца. В первом случае сырец высушивается атмосферным воздухом за счет солнечного тепла в летнее время, во втором – за счет тепла, получаемого от сгорания топлива. Задача организованного процесса сушки состоит в подводе энергии (тепловой или электрической) к высушиваемому изделию с наименьшими потерями и в наименьшие сроки, допустимые для целостности изделия. Большинство современных кирпичных заводов оборудовано устройствами для искусственной сушки кирпича-сырца, которые по режиму работы подразделяются на сушилки периодического (камерные) и непрерывного (туннельные) действия. Сушилки непрерывного действия (туннельные)являются наиболее современным сушильным агрегатом в кирпичной промышленности. В туннельной сушилке кирпич-сырец, находящийся на вагонетках, в течение цикла сушки перемещается через весь туннель от одного его конца к другому. Срок сушки кирпича-сырца, изготовленного из пароувлажненной массы, сокращается примерно на 30%. Расход тепла на сушку кирпича-сырца в туннельных сушилках ниже, чем в камерных. Существенным преимуществом туннельных сушилок перед камерными является то, что туннельные могут быть оснащены аппаратурой, обеспечивающей автоматическое регулирование процесса сушки. Продолжительность процесса сушки и качество высушенного кирпича-сырца в значительной степени зависят от плотности и системы садки сырца на сушильных вагонетках. Необходимо обеспечить равномерность омывания теплоносителем сырца и получение надлежащей температуры и относительной влажности теплоносителя в различных частях сушилки. Недостаток туннельных сушилок в том, что в них наблюдается расслоение теплоносителя и более интенсивная сушка сырца на верхних полках. Устранение расслоения и равномерная сушка сырца по высоте туннеля достигаются перемешиванием теплоносителя в туннеле путем устройства воздушных завес за счет дополнительной подачи воздуха сверху в отдельных местах туннеля струйками с большой скоростью.

Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, т.е. происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое и прочное тело.

Строительные материалы и изделия обжигают в промышленных печах. Промышленной печью называют установку технологического назначения, в которой посредством теплового воздействия при относительно высоких температурах изменяется агрегатное состояние обрабатываемого материала, его химический состав либо его кристаллическая структура.

Обжиг кирпича производят в печах периодического и непрерывного действия. В кирпичной промышленности из печей периодического действия применяют преимущественно камерные печи. Из печей непрерывного действия применяют главным образом кольцевые и туннельные.

Периодические печи используют для обжига кирпича на заводах малой мощности. Загрузка и разгрузка этих печей производится при сравнительно высоких температурах, что обуславливает тяжелые условия труда обслуживающего персонала. Камерные печи или горны отличаются значительной трудоемкостью обслуживания, большой неравномерностью температур по высоте печи.

Для обжига кирпича применяют кольцевые печи. Они отличаются высокой тепловой экономичностью, возможностью использования низкосортных видов топлива, перехода с одного вида топлива на другое без каких-либо значительных переделок, высокой удельной и общей производительностью.

Весьма существенным недостатком кольцевых печей является то, что в рабочей зоне садки и выгрузки (выставки) кирпича очень высокая температура: например, в рабочей зоне выгрузки температура в летние месяцы достигает 800С и более. При этом садка и выгрузка кирпича производится вручную. На новых и реконструируемых кирпичных заводах строительство кольцевых печей не производится.

Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обожженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича. В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен.

Многорядовые (по высоте) туннельные печи, применительно к обжигу стеновой керамики, обладают крупным недостатком – большим перепадом температур по высоте, достигающим в зоне подогрева 420 0С, который на участке максимальных температур уменьшается до 20-40 0С. Борьба с этим перепадом осуществляется главным образом путем рециркуляционных потоков газов («завес»), нагнетаемых вентиляторами как в зоне подогрева, так и в зоне охлаждения на нескольких позициях по длине печного канала. Борьба эта не всегда успешна.

Второй недостаток – трудности настройки аэродинамического режима.

Лучшие условия эксплуатации туннельных печей достигается при наличии давления или разряжения в зоне обжига порядка 0,1-0,3мм вод.ст. и не выше 1 мм вод.ст. во избежание выбивания горячих газов и быстрого износа вагонеток.

Совершенствование конструкций туннельных печей с целью увеличения обжигаемой физической массы изделий (увеличение теплоемкости), совершенствование горелок для развития длины факела, а также полноты сжигания жидкого топлива, улучшение теплоизоляции пода – все это приводит к определенным успехам, но не исключает необходимости разработки и совершенствования конструкций печей для однорядного скоростного обжига.

В конструктивном отношении современные туннельные печи обладают некоторыми особенностями. Конструкция свода плоская, что упрощает постройку печи, позволяет расширить печной канал и обеспечить работу автомата – укладчика. Толщина кладки стен туннельных печей снижена до 0,5м., благодаря применению огнеупорных блоков 30-40% пористости, наружная поверхность стен покрыта дюралюминием с хорошей отражательной способностью. Поверх свода помещена теплоизоляция в виде вспученного вермикулита. Кладку пода (на вагонетках) осуществляют из крупных огнеупорных фасонных блоков, изготовленных из пористого (30-40%) корундомуллитового, кордиеритового или дистенового огнеупора, обеспечивающего огнеупорность, теплоизоляцию и постоянство объема.

 Наблюдается тенденция увеличения ширины туннельной печи, что возможно при переходе на более совершенный способ сжигания топлива с получением длинного факела горения и равномерным развитием температурного поля /9/.

Для обжига и сушки кирпича также используют туннельные печи-сушила, которые совмещают в одном агрегате печь и сушило. Принцип работы изложен ниже.

В туннеле интенсивной сушки, работающему по принципу противотока, кирпичи движутся стоя в один слой, через участки с различными температурными режимами и интенсивной вентиляцией. Благодаря чему обеспечивается быстрая, равномерная сушка. Для высокочувствительных изделий может быть предусмотрено применение дополнительных зонных нагревателей. В зоне сушильного туннеля подмешивается горячий воздух из печного пространства.

После прохождения подсушки вагонетки с садкой перемещаются загрузочным механизмом, который находится на противоположном конце сушилки, в печь для обжига, расположенную над сушилкой. В печи интенсивного обжига кирпича обжиг производится пламенем, направленным равномерно сверху. По длинному узкому туннелю печи навстречу теплоносителю, непрерывно, вплотную одна к другой, передвигаются вагонетки с обжигаемым изделием через постоянные тепловые зоны подогрева, обжига и охлаждения. Сначала вагонетки с изделиями подогреваются продуктами горения, отходящих из зоны обжига, затем проходят через зону обжига, где подвергаются воздействию газов высокой температуры и, наконец остывают отдавая тепло стенкам туннеля или непосредственно охлаждаясь воздухом.

По всей длине печи между стенками и вагонетками имеется песочный затвор и лабиринт. Они служат для уменьшения газообмена между обжигательным каналом печи и подвагонеточным пространством. Печь работает на газообразном топливе и оборудована горелками. В зоне обжига установлено 5 групп горелок по 8 штук в каждой. Горячий воздух из печи отбирают в нескольких местах по длине зоны. Увеличение сечения отборных окон и канала, соединяющего печь с сушилкой, обеспечивает почти полный отбор тепла охлаждающихся изделий и вагонеток, и передачу его в сушилку.

С помощью автоматических контрольных устройств системы интенсивной сушки и обжига кирпича, а так же благодаря малой высоте садки, как в сушильном туннеле, так и в туннеле обжига могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами.

Наиболее важным преимуществом является значительное повышение культуры производства на кирпичных заводах, улучшение санитарно-гигиенических условии труда и возможность полной механизации трудоёмких ручных процессов.

В данной работе выбираем интенсивную технологию обжига, т.к. в этом устройстве происходит совмещение сушки и обжига, а также могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Эта технология состоит из единой линии от запасного пути после печи обжига до автомата укладчика.

Кирпич снимается с вагонеток, устанавливается на поддоны, упаковывается в транспортные пакеты и транспортируется с помощью автопогрузчика. На кирпичных заводах применяются автопогрузчики самых различных типов со щитовыми захватами и с зажимами. Вилочные зажимы работают от гидравлической системы либо приводятся в действие от веса поднимаемого пакета.

В данной работе выбираем автопогрузчик с вилочным зажимом, т.к он манёвренный и лёгок в эксплуатации.

После чего кирпич отправляется на склад готовой продукции, находящийся на открытых асфальтированных площадках, расположенных на территории предприятия. Склад готовой продукции оборудован мостовыми кранами для загрузки поддонов с кирпичом в автомобили.



Информация о работе «Технология производства керамического кирпича»
Раздел: Промышленность, производство
Количество знаков с пробелами: 95787
Количество таблиц: 14
Количество изображений: 5

Похожие работы

Скачать
158944
42
6

... не требуют обслуживания и ремонта, то есть являются более эффективными при долговременной эксплуатации. Краснодарский край в течение многих лет является лидером среди регионов России по производству керамического кирпича. Его удельный выпуск сопоставим с развитыми странами и заметно выше среднего по России (табл. 4). /2.3/ Таблица 4 - Удельное производство керамического кирпича Страны ...

Скачать
76686
20
0

... ; -укладка кирпича на поддоны; -складирование готовой продукции;  В июне 1997 года на Себряковском комбинате асбестоцементных изделий, Волгоградской области введен в эксплуатацию завод по производству керамического кирпича по предлагаемой технологии. В ноябре 2000 г. там же введен в эксплуатацию второй завод. В настоящее время они аналогов пока не имеют. № Наименование, назначение Кол-во ...

Скачать
15666
0
0

нную технологию и новые материалы. Но создавать керамические изделия можно и дома, используя вполне доступные материалы и оборудование, применяя сравнительно несложную технологию. Технология производства керамических изделий Изготовление керамических изделий включает несколько этапов: приготовление тестообразной массы, формовка изделия, нанесение декора, сушка, обжиг в печи. 1) Глиняное ...

Скачать
152188
35
13

... 4280 tОБЖ=1000оС СО, NО2, СН4 5 Повышение уровня шума оказывает вредное воздействие на организм человека. Производственные процессы на предприятии в разрабатываемом проекте сопровождаются шумом, непревышающим установленные нормы. Контроль шумового воздействия на производстве осуществляется в соответствии с ГОСТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 3223-85 «Санитарные нормы ...

0 комментариев


Наверх