1. Краткое описание технологического процесса
Производственные процессы проектируемого цеха осуществляются в основном, инструментальном, термическом и сварочном отделениях, а также на сборочном участке.
Потребителями основного отделения являются металлообрабатывающие станки средней мощности, к ним относятся: круглошлифовальный, токарно-револьверный, вертикально-сверлильный, токарный полуавтомат, токарный с ЧПУ, горизонтально-проточный, горизонтально-расточный, горизонтально-фрезерный, токарно-винторезный, радиально-сверлильный и другие.
Металлообрабатывающие станки являются трехфазными, по надежности электроснабжения относятся ко второй категории. Устанавливаются стационарно и по площади цеха распределены равномерно.
В проектируемом цехе имеются приемники работающие в повторно-кратковременном режиме – это электроприемники контактной сварки (точечные стационарные, сварочные стыковые, сварочные шовные роликовые, сварочные точечные, сварочные стационарные машины).
Основным технологическим процессом проектируемого в данном курсовом проекте цеха является металлообработка, сварка, термическая обработка, шлифовка, расточка металлических заготовок и сборка металлических конструкций.
Все электроприемники рассчитаны на переменный ток напряжением 380 В промышленной частоты.
Окружающая среда в цехе нормальная, температура не превышает 20-300С. Для удаления технологической пыли, газа и паров, образованных во время производственного процесса и способных нарушить нормальную работу оборудования, в цехе используются семь вентиляционных установок различной мощности.
2. Определение расчетных электрических нагрузок
Определение электрических нагрузок является одним из основных этапов проектирования. По значению электрических нагрузок выбирают электрооборудование и схему системы электроснабжения, определяют потери мощности и электроэнергии. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения, эксплуатационные расходы, надежность работы электрооборудования.
Определение максимальных нагрузок производится в два этапа. На первом этапе определяется нагрузка отдельных электроприемников, отдельных цехов и производственных участков, а также всего предприятия.
На этом этапе расчета предполагают отсутствие источников реактивной мощности в СЭС. Результаты первого этапа расчета электрических нагрузок используются как исходные данные для выбора числа и мощности силовых трансформаторов с одновременным определением мощности и мест подключения компенсирующих устройств
Для наиболее точного расчета электрических нагрузок применяют вероятностный метод, к которому относится метод расчетного коэффициента, применяемый для расчета нагрузок промышленных предприятий.
Расчет легко поддается автоматизации с помощью ЭВМ и реализован в программе «ZAPUSK».
Определение расчетных электрических нагрузок на первом этапе производится для выбора силовых трансформаторов цеховой КТП, магистральных шинопроводов. Метод расчетного коэффициента разработан в ВНИПИ «Тяжпромэлектропроект», изложен в «Указаниях по расчету электрических нагрузок» /1/ и производится по нижеизложенной методике.
Для первого этапа расчета нагрузок необходимо разбить электроприемники на характерные категории, т.е. объединить их в группы по сходству режимов работы и близким коэффициентам использования
Суммарные номинальные активная и реактивная мощности каждой характерной категории определяется по формулам:
(1)
(2)
где – активная номинальная мощность электроприемника, кВт;
, – соответственно номинальные активная и реактивная мощности группы электроприемников, кВт и квар;
– паспортное или справочное значение коэффициента реактивной мощности электроприемника.
Средняя мощность нагрузок каждой категории электроприемников определяется по выражениям:
(3)
(4)
где , – соответственно номинальные активная и реактивная мощности за период времени Т, кВт и квар.
Средневзвешенные коэффициенты использования и мощности рассчитываются следующим образом:
(5)
(6)
где , – соответственно коэффициент использования i-го электроприемника и средневзвешенный коэффициент использования;
– средневзвешенный коэффициент реактивной мощности.
Эффективное число электроприемников по характерной категории определяется по формуле:
(7)
На основании рассчитанных параметров и таблицы 1 представленной в /1/ определяется расчетный коэффициент:
;) (8)
где – эффективное число электроприемников;
– коэффициент расчетной нагрузки.
Определяем расчетную мощность по каждой характерной категории:
(9)
(10)
где , – соответственно расчетные активная и реактивная мощности, кВт и квар.
Полная расчетная нагрузка определяется по следующему выражению:
(11)
Исходные данные для расчета электрических нагрузок проектируемого цеха с выделением характерных категорий представлены в таблице 2. Где электроприемники цеха разбиваются на однородные по режиму работы группы.
Таблица 2 – Исходные данные для расчета электрических нагрузок
Наименование ЭП | № на плане | Кол-во | Р ном, кВт | Коэффициенты | ||
Ки | cos φ | tg φ | ||||
Первая характерная категория (станки) | ||||||
1. Круглошлифовальный | 1–6, 59–65 | 13 | 28 | 0,13 | 0,5 | 1,73 |
2. Токарно – револьверный | 7–11, 87–91 | 10 | 18 | 0,13 | 0,5 | 1,73 |
3. Вертикально-сверлильный | 12–16 | 5 | 30 | 0,13 | 0,5 | 1,73 |
4. Токарный полуавтомат | 17–22 | 6 | 14 | 0,13 | 0,5 | 1,73 |
5. Горизонтально-проточный | 23–27, 114, 115 | 7 | 21 | 0,13 | 0,5 | 1,73 |
6. Токарный с ЧПУ | 28–36 | 9 | 14 | 0,13 | 0,5 | 1,73 |
7. Горизонтально-расточный | 37–40, 85,86 | 6 | 12 | 0,13 | 0,5 | 1,73 |
8. Горизонтально-фрезерный | 41–53 | 13 | 23 | 0,13 | 0,5 | 1,73 |
9. Токарно-винторезный | 54–58, 92–94 | 8 | 16 | 0,13 | 0,5 | 1,73 |
10. Радиально-сверлильный | 66–73 | 8 | 13 | 0,13 | 0,5 | 1,73 |
11. Вертикально-фрезерный | 74–76 | 3 | 15 | 0,13 | 0,5 | 1,73 |
12. Бесцентро-шлифовальный | 77–84 | 8 | 44 | 0,13 | 0,5 | 1,73 |
13. Шлифовальный | 95–100 | 6 | 23 | 0,13 | 0,5 | 1,73 |
14. Горизонтально-шлифовальный | 101, 102 | 2 | 30 | 0,13 | 0,5 | 1,73 |
15. Вертикально-фрезерный | 103–105 | 3 | 26 | 0,13 | 0,5 | 1,73 |
16. Радиально-сверлильный | 106,107 | 2 | 16 | 0,13 | 0,5 | 1,73 |
17. Токарный с ЧПУ | 110, 111 | 2 | 20 | 0,13 | 0,5 | 1,73 |
18. Токарно – револьверный | 112, 113 | 2 | 24 | 0,13 | 0,5 | 1,73 |
19. Токарный полуавтомат | 116–118 | 3 | 15 | 0,13 | 0,5 | 1,73 |
20. Плоскошлифовальный | 119, 120 | 2 | 17 | 0,13 | 0,5 | 1,73 |
21. Вертикально-фрезерный | 121–123 | 3 | 18 | 0,13 | 0,5 | 1,73 |
22. Точильно – шлифовальный | 124–128 | 5 | 30 | 0,13 | 0,5 | 1,73 |
Вторая характерная категория (вентустановки) | ||||||
1. Вентустановка | 108,109,129 | 3 | 14 | 0,65 | 0,8 | 0,75 |
2. Вентустановка | 142 | 1 | 18 | 0,65 | 0,8 | 0,75 |
3. Вентустановка | 162–164 | 4 | 15 | 0,65 | 0,8 | 0,75 |
Третья характерная категория (термические установки) | ||||||
1. Электромаслянная ванна | 130, 131 | 2 | 15 | 0,8 | 0,9 | 0,48 |
2. Нагревательная электропечь | 132–134 | 3 | 20 | 0,8 | 0,9 | 0,48 |
Продолжение таблицы 2 | ||||||
3. Термическая печь | 135–136 | 2 | 50 | 0,8 | 0,9 | 0,48 |
4. Электротермическая печь | 137 | 1 | 41 | 0,8 | 0,9 | 0,48 |
5. Электропечь | 138–141 | 4 | 32 | 0,8 | 0,9 | 0,48 |
Четвертая характерная категория (контактная сварка) | ||||||
1. Точечные стационарные | 143–146 | 4 | 120 | 0,35 | 0,5 | 1,73 |
2. Сварочные стыковые | 147–151 | 5 | 70 | 0,35 | 0,5 | 1,73 |
3. Сварочные шовные роликовые | 152–155 | 4 | 60 | 0,35 | 0,5 | 1,73 |
4. Сварочные точечные | 156–158 | 3 | 90 | 0,35 | 0,5 | 1,73 |
5. Сварочные стационарные | 159–161 | 3 | 40 | 0,35 | 0,5 | 1,73 |
Нагрузка цеха представлена как трехфазной, так и однофазной нагрузкой. Так, в сварочном отделении имеются однофазные электроприемники, которые считаются специфической нагрузкой. Их расчет производиться в ручную и приводиться в приложении А.
Расчет трехфазных нагрузок приемников электроэнергии напряжением до 1000 В проводится с использованием пакета прикладных программ «ZAPUSK». Расчет по характерным категориям цеха трехфазной нагрузки, приведен в приложении Б.
Осветительная нагрузка рассчитывается методом удельной плотности осветительной нагрузки в программе «ZAPUSK». Результаты расчета всех нагрузок цеха приведены в таблице 3. Результаты расчета осветительной нагрузки приведены в приложении В.
Таблица 3 – Результаты расчета электрических нагрузокХарактерная категория | Р ном, кВт | Рср, кВт | Qср, квар | Рр, кВт | Qр, квар | Sр, кВА | Ip, A |
Первая характерная категория (станки) | 2730 | 354,9 | 613,98 | 230,69 | 675,38 | 713,69 | 1084,3 |
Вторая характерная категория (вентустановки) | 120 | 78 | 58,5 | 70,2 | 64,35 | 95,23 | 144,7 |
Третья характерная категория (термические установки) | 359 | 287,2 | 137,86 | 287,2 | 151,64 | 324,78 | 493,45 |
Суммарная трехфазная нагрузка по цеху | 3209 | 720,1 | 810,34 | 588,09 | 891,37 | 1067,88 | 1622,483 |
Однофазная нагрузка | 338,43 | 586,16 | 676,86 | 1781,21 | |||
Осветительная нагрузка | 152,88 | 145,24 | 70,29 | 145,24 | 70,29 | 161,35 | 232,89 |
ИТОГО по цеху | 926,52 | 1477,53 | 1744,74 |
Выбор числа и мощности силовых трансформаторов для цеховых трансформаторных подстанций промышленных предприятий должен быть технически и экономически обоснованным, так как он оказывает существенное влияние на рациональное построение схем промышленного электроснабжения.
Критерием при выборе трансформаторов являются надежность электроснабжения, расход цветного металла и потребная трансформаторная мощность
При сооружении цеховых трансформаторных подстанций предпочтение следует отдавать, комплектным трансформаторным подстанциям (КТП), полностью изготовленным на заводах.
Рассмотрим варианты установки одного и двух трансформаторов на КТП.
Мощность трансформатора определяется по следующему выражению:
кВА (12)
где N – количество устанавливаемых на КТП трансформаторов;
Кз – коэффициент загрузки трансформаторов, равен 0,7 для двух трансформаторов на КТП, равен 0,9 при одном трансформаторе.
Принимаем двухтрансформаторную КТП 1000/10 кВА с силовым трансформатором типа ТМ-1000/10.
Выбираем мощность трансформатора, при установке одного трансформатора:
кВА (13)
Принимаем однотрансформаторную КТП 1600/10 кВА с силовым трансформатором типа ТМ-1000/10.
Определяем наибольшую реактивную мощность, которую целесообразно передать в сеть 0,4 кВ через трансформаторы:
Для КТП с двумя трансформаторами:
квар
Для КТП с одним трансформатором:
квар
Определяем мощность низковольтных батарей конденсаторов.
Для КТП с двумя трансформаторами:
квар (16)
Для КТП с одним трансформатором:
квар (17)
Определяем дополнительную мощность низковольтных батарей конденсаторов по условию потерь. Для этого находим расчетный коэффициент γ, зависящий от расчетных параметров Кр1 и Кр2 и схемы питания цеховой ТП, при условии работы предприятия в две смены, используя рис 4.8, 4.9 и табл. 4.6, 4.7.
,
γ = 0,37
Для КТП с двумя трансформаторами:
Для КТП с одним трансформатором:
Определяем суммарную мощность низковольтных батарей конденсаторов:
Для КТП с двумя трансформаторами:
квар (20)
Примем к установке 1*УКЛ (П) Н – 0,38 – 432 – 108УЗ
1*УКЛ (П) 0,38 – 300 – 150УЗ
Для КТП с одним трансформатором:
кар (21)
Примем к установке 1*УКЛ (П) Н – 0,38 – 432 – 108УЗ
1*УКЛ (П) 0,38 – 450 – 150УЗ
Таблица 4 – Данные для расчета потерь в трансформаторах
Параметр | Единица измерения | ТМН-1000/10 | ТМН1600/10 |
SНОМ | кВА | 1000 | 1600 |
DPХХ | кВт | 2,1 | 2,8 |
DPК | кВт | 11,6 | 16,5 |
IХ | % | 1,4 | 1,3 |
ик | % | 5,5 | 5,5 |
Для оценки наиболее целесообразного варианта необходимо определить затраты на КТП, по следующим выражениям:
, (22)
где Е – коэффициент дисконтирования, определяемый в зависимости от ставки рефинансирования, устанавливается ЦБ, равный Е=0,12;
КТП и КНБК – стоимость трансформаторной подстанции и конденсаторных батарей соответственно;
С – стоимость потерь электрической энергии в трансформаторах и батареях конденсаторов, равная 0,6 руб./кВт;
α – суммарные ежегодные отчисления на амортизацию, ремонт и обслуживание, принимаемые 0,094;
ΔWТР – потери электроэнергии в трансформаторах;
ΔWНБК – потери электроэнергии в НБК.
Для двухтрансформаторной КТП:
Активные потери мощности в трансформаторе
кВт (23)
Потери электроэнергии в трансформаторе:
ΔWТР=РТР ∙ ТГ = 15,57 ∙ 8760=136393,2 кВт∙год; (24)
Потери электроэнергии в НБК:
кВт∙год,
где pНБК.уд – удельная величина потерь в НБК, равная 0,003 кВт/квар.
Таблица – 5 Стоимость оборудования
ТМН-1000/10, тыс. руб | ТМН1600/10, тыс. руб. | УКЛ (П) Н – 0,38–432–108УЗ тыс. руб. | УКЛ (П) 0,38–300–150УЗ, тыс. руб. | УКЛ (П) 0,38–450–150УЗ, тыс. руб. |
28,75 | 31,07 | 3,64 | 2,355 | 3,385 |
Таким образом, затраты равны:
тыс. руб. (25)
Аналогичный расчет произведем для однотрансформаторной КТП:
кВт (26)
ΔWТР =РТР ∙ ТГ = 17,37 ∙ 8760= 152248,8 кВт∙год (27)
кВт∙год,
Таким образом, затраты равны:
тыс. руб. (29)
При сравнении двух вариантов очевидно, что затраты на КТП с двумя трансформаторами меньше, чем на КТП с одним трансформатором. Поэтому к установке принимаем двухтрансформаторную КТП с трансформатором ТМ – 1000/10.
Расчет центра электрических нагрузок
При проектировании, с целью определения места расположения цеховой КТП строится картограмма нагрузок. Картограмма представляет собой размещение на генеральном плане цеха окружностей, площадь которых равна в выбранном масштабе расчетным нагрузкам.
Для определения координат ЦЭН на конкретный момент времени, график электрических нагрузок представляют ступенчато, при этом каждая ордината определяется как отношение к максимальной мощности группы электроприемников:
(30)
(31),
где Ki – относительная мощность i-ой группы электроприемников в k-й час суток;
Pi – максимальная мощность i-ой группы электроприемников.
По найденным ЦЭН для каждого часа суток определяется математическое ожидание ЦЭН, среднеквадратическое отклонение и коэффициент корреляции.
(32)
(33)
Среднеквадратическое отклонение:
(34)
(35)
Коэффициент корреляции:
В течение суток ЦЭН смещаются по территории охваченной эллипсом, который и характеризует зону рассеяния ЦЭН.
Для того, чтобы построить эллипс зоны рассеяния ЦЭН необходимо определить угол поворота осей эллипса, относительно выбранной системы координат и полуоси эллипса рассеяния ЦЭН.
Угол поворота осей эллипса:
(36)
Полуоси эллипса рассеяния центров:
(37)
(38)
На основании расчетных значений математического ожидания условного центра нагрузок, координат полуосей и угла поворота осей строится эллипс рассеяния нагрузок. Место расположения источника питания (КТП) выбирается в наиболее удобной его точке. В этом случае высшее напряжение будет максимально приближено к центру потребления электроэнергии, а распределительные сети будут иметь минимальную протяженность. Если по какой-либо причине (технологической, архитектурной и др.) эллипс рассеяния попадает на территорию цеха и нельзя расположить источник питания в зоне рассеяния нагрузок, то его смещают в сторону внешнего источника питания. Данные для построения эллипса приведены в таблице 6.
Расчет радиусов картограммы электрических нагрузок цеха, координат ЦЭН и эллипса рассеяния нагрузок произведен пакетом программ «MathCad 11» фирмы MathSoft и приведен в приложении Г.
Таблица 6 – Данные для построения эллипса рассеяния нагрузок
QX, см | QY, см | σX0 | σY0 | KK | α, о | X, см | Y, см |
10,62 | 7,25 | 4,59 | 3,33 | 0,72 | 32,83 | 12,99 | 4,9 |
На основании расчетных данных строится эллипс зоны рассеяния с центром в точке О(10,62; 7,25), углом поворота осей равным 32,83о относительно выбранной системы координат и откладываются рассчитанные значения полуосей эллипса.
... или двигателя. · Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. · Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...
... прогрессивные удельные нормы расхода электроэнергии и премиальная система поощрения за ее экономию. 2. Проектирование низковольтного электроснабжения цеха 2.1 Расчет трехфазных электрических нагрузок по первому этапу Определение электрических нагрузок в системе электроснабжения (СЭС) промышленного предприятия выполняют для характерных мест присоединения приёмников электроэнергии. При ...
... от ГПП или ЦРП до цеховых трансформаторных подстанций). Схемы внешнего или внутреннего электроснабжения выполняют с учетом особенностей режима работы потребителей, возможностей дальнейшего расширения производства, удобства обслуживания и т.д. В данном курсовом проекте питание механического цеха осуществляется кабелем, который соединен с алюминиевыми шинами. Через них осуществляется питание ...
... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...
0 комментариев