8. Проверка выбранных сечений проводников и защитных аппаратов

Для оценки правильности выбора сечений проводников необходимо провести проверку выбранных кабельных линий и шинопроводов.

Выбранные по длительному току и согласованные с током защиты аппаратов сечения внутрицеховых электрических сетей должны быть проверены на потерю напряжения. Нормированных значений для потери напряжения не установлено.

Однако, зная напряжение на шинах источника питания и подсчитав потери напряжения в сети, определяют напряжение у потребителя.

Проверка КЛ шинопроводов осуществляется по потери напряжения:

ΔU= (1.73·Ip·L·100/Uном) · (rуд · cosφ + xуд · sinφ)

где cosφ и sinφ – принимается средневзвешенное значение коэффициента мощности, представленные в таблице 4 и 5 по результатам расчета электрических нагрузок для распределительной цеховой сети.

L – длина линии, м; Ip – расчетный ток в линии, А;

Допустимая потеря напряжения ΔUдоп.= +5%;

Условие проверки на потерю напряжения:

ΔU < ΔUдоп.

Произведем расчет потерь напряжения и сведем в таблицу 20.

Кабельные линии, питающие непосредственно ЭП проверяются на потерю напряжения (ΔU%) в зависимости от номинального коэффициента мощности (сosф) и выбранного сечения кабеля (S, мм2) следующим способом:

ΔU%= е · Ip · L· 10-3,

где е – удельные потери напряжения в трехфазной кабельной линии напряжением 380 В, %/ кВт · км;

Ip – ток в линии, А;

L – длина кабеля, питающего ЭП, м.

Правилами устройства электроустановок установлена допустимая потеря напряжения линий силовых электроприемников + 5%.

Таблица 20. Данные для расчета потерь напряжения в элементах распределительной сети варианта 1

Элемент сети Ip, А L, м

cosφср.взв/

sinφ

Сечение, мм

rуд, мОм/м

xуд, мОм/м

ΔU, %
ШМА 1101

60

6

0,5 / 0,866

300х160

3х240

0,031

0,129

0,017

0,0587

0,86

0,87

ШРА 1

КЛШРА1

284,15

66

6

0,5 / 0,866

284х95

3х120

0,1

0,258

0,13

0,06

1,32

0,392

ШРА 2

КЛШРА2

327,93

66

6

0,5 / 0,866

284х95

3х150

0,1

0,206

0,13

0,06

1,52

0,367

ШРА 3

КЛШРА3

277,061

66

6

0,5 / 0,866

284х95

3х120

0,1

0,258

0,13

0,06

1,286

0,2

ШРА 4

КЛШРА4

636,5

66

6

0,494/0,869

284х125

3х240

0,09

0,129

0,085

0,077

1,242

0,51

ШРА 5

КЛШРА5

180

30

6

0,652/0,758

260х80

3х50

0,2

0,62

0,145

0,062

1,99

0,526

ШРА 6

КЛШРА6

146,24

30

6

0,672/0,741

260х80

3х50

0,2

0,62

0,145

0,062

0,565

0,427

ШРА 7

КЛШРА7

248,1

30

6

0,9/0,433

260х80

3х95

0,2

0,326

0,145

0,194

0,782

0,412

сп1

КЛ1

256,01 10 0,5 / 0,866

-

3х95

-

0,326

-

0,194

-

0,425

Удельные потери напряжения в трехфазной кабельной линии определяются по таблицам 5, 6 [7].

Таблица 21. Данные для расчета потерь напряжения в КЛ питающих ЭП

№ по плану ЭП, питающих КЛ: Ip, А сosф

S, мм2

L, м е, %/кВт· км ΔU, %
1–6 85 0,5 3х16 5 1,42 0,6
59–65 85 0,5 3х16 8 1,42 0,965
7–11 54,7 0,5 3х6 5 3,75 1,025
87–91 54,7 0,5 3х6 8 3,75 1,641
12–16 91,2 0,5 3х25 4 0,933 0,34
17–22 42,5 0,5 3х6 4 3,75 0,637
23–27 63,8 0,5 3х10 6 2,27 0,869
114–115 63,8 0,5 3х10 10 2,27 1,448
28–36 42,5 0,5 3х6 10 3,75 0,637
37–40 36,5 0,5 3х4 9 5,61 1,84
85,86 36,5 0,5 3х4 4 5,61 0,819
41–53 69,8 0,5 3х10 3 2,27 0,475
54–58, 92–94 48,6 0,5 3х6 4 3,75 0,729
66–73 39,5 0,5 3х4 6 5,61 1,33
74–76 45,5 0,5 3х6 4 3,75 0,683
77–84 133,7 0,5 3х35 10 0,632 0,844
95–100 69,8 0,5 3х10 8 2,27 1,268
101, 102 91,2 0,5 3х25 15 0,933 1,276
103–105 79 0,5 3х25 12 0,933 0,884
106,107 48,6 0,5 3х6 6 3,75 1,094
108, 109, 129 26,6 0,8 3х4 10 5,61 1,492
110, 111 60,8 0,5 3х10 15 2,27 2,07
112, 113 72,9 0,5 3х10 18 2,27 2,97
116–118 28,5 0,8 3х4 18 5,61 2,88
119, 120 32,2 0,8 3х4 12 5,61 2,17
121–123 34,1 0,8 3х4 10 5,61 1,91
124–128 91,2 0,5 3х25 10 0,933 0,85
130, 131 25,3 0,9 3х4 6 5,61 0,852
132–134 33,7 0,9 3х4 15 5,61 2,84
135–136 84,4 0,9 3х25 8 0,933 0,629
137 69,2 0,9 3х10 18 2,27 2,82
138–141 54,02 0,9 3х10 18 2,27 2,207
142 34,1 0,8 3х4 11 5,61 2,1
143–146 364 0,5 3х185 10 0,16 0,582
147–151 212,7 0,5 3х70 12 0,363 0,926
152–155 182,3 0,5 3х50 15 0,487 1,33
156–158 273,5 0,5 3х120 18 0,23 1,132
159–161 121,5 0,5 3х70 15 0,363 0,662
162–164 28,5 0,8 3х4 12 5,61 1,92

Так как ΔU во всех элементах сети меньше ΔUдоп = +5%, то для всех КЛ и шинопроводов условие по потере напряжения соблюдается.

Шинопроводы проверяются на электродинамическую стойкость по условию:

iуд< iуд.доп,

где iуд.доп – допустимая электродинамическая стойкость, кА.

Таблица 22. Проверка шинопроводов на электродинамическую стойкость

Шинопровод

iуд, кА

i уддоп, кА

Условие проверки
ШРА1 73–400-У3 17,516 25

iуд< iуд.доп,

ШРА2 73–400-У3 17,516 25

iуд< iуд.доп,

ШРА3 73–400-У3 8,536 25

iуд< iуд.доп,

ШРА4 73–630-У3 7,33 35

iуд< iуд.доп,

ШРА5 73–250-У3 8,815 15

iуд< iуд.доп,

ШРА673–250-У3 8,834 15

iуд< iуд.доп,

ШРА7 73–250-У3 9,071 15

iуд< iуд.доп,

ШМА68-НУЗ-1600 50,51 70

iуд< iуд.доп,

Так как ударный ток шинопроводов меньше амплитудного значения электродинамической стойкости табл. 7.3. и 7.4. [2], то условие на электродинамическую стойкость соблюдается.

Выбранные аппараты защиты необходимо проверять во-первых по согласованию теплового расцепителя с сечением выбранных элементов сети, во-вторых по чувствительности к токам КЗ.

1. Проверка по согласованию теплового расцепителя с сечением выбранных элементов сети осуществляется по условию:

Iном.расц < 1,5 · Iдл.доп,

где Iном.расц – номинальный ток расцепителя, А;

Iдл.доп – длительно допустимый ток элемента сети, А.

Проверка по согласованию теплового расцепителя с сечением выбранных элементов сети для выбранного варианта представлены в таблице 23.

Таблица 23. Проверка автоматических выключателей по согласованию теплового расцепителя с сечением выбранных элементов сети

Элемент сети Тип выключателя Iдл.доп, А Iном. расц, А

Iном.расц < 1,5 · Iдл.доп

ШМА АВМ-20Н 1600 1200 1200 < 2400
ШРА1 АВМ-4С 400 400 400 < 600
ШРА2 АВМ-4С 400 400 400 < 600
ШРА3 АВМ-4С 400 400 400 < 600
ШРА4 АВМ-10Н 630 600 600 < 945
ШРА5 АВМ-4С 250 250 100 < 375
ШРА6 АВМ-4С 250 150 120 < 375
ШРА7 АВМ-4С 250 400 100 < 375
СП1 АВМ-4С 260 400 100 < 390
ШОС АВМ-4Н 100 100 100 < 150

В соответствии с приведенными условиями все автоматические выключатели по согласованию тепловых расцепителей соответствуют выбранным сечениям элементов сети.

2. Проверка по чувствительности к токам КЗ осуществляется по условию:

I(1)кзmin > 1,25 · Iср.эл,

где I(1)кзmin – минимальный ток однофазного КЗ, А;

Iср.эл – ток срабатывания электромагнитного расцепителя, определяется по паспортным данным в зависимости от пределов регулирования времени срабатывания, Iср.эл= 10 · Iном. расц, А.

Таблица 24. Проверка автоматических выключателей по чувствительности к токам КЗ

Элемент сети Тип выключателя

I(1)кзmin, А

Iср.эл, А

I(1)кзmin > 1,25 · Iср.эл,

ШМА АВМ-20Н 18390 12000 18390> 18000
ШРА1 АВМ-4С 5520 4000 5520> 5000
ШРА2 АВМ-4С 5520 4000 5520> 5000
ШРА3 АВМ-4С 8119 4000 8119> 5000
ШРА4 АВМ-10Н 9050 6000 9050 > 9000
ШРА5 АВМ-4С 5574 2500 5574 >3750
ШРА6 АВМ-4С 5907 1500 5907> 2250
ШРА7 АВМ-4С 6028 4000 6028 > 5000
СП1 АВМ-4С 6253 4000 6253 > 5000
ШОС АВМ-4Н 1500 1000

1500 > 1500

Таким образом, выбранные автоматические выключатели чувствительны к расчетным токам короткого замыкания.

1. Проверка по согласованию выбранной вставки с сечением выбранного кабеля осуществляется по условию:

I в < 3 · Iдл.доп,

где I в – номинальный ток плавкой вставкой, А;

Iдл.доп – длительно допустимый ток ка, А.

Соответствие плавких вставок предохранителей по согласованию с сечениями выбранных кабелей, питающих электроприемники, представлены в табл. 25.

Таблица 25. Проверка плавких вставок предохранителей

Типы ЭП Тип предохранителя Iпл.вст Iдлдоп, А

I в < 3 · Iдл.доп

1. Круглошлифовальный ПН-2–400 250 90 250 < 270
2. Токарно – револьверный ПН-2–250 150 55 150 < 165
3. Вертикально-сверлильный ПН-2–400 300 125 300< 375
4. Токарный полуавтомат ПН-2–250 120 55 120< 165
5. Горизонтально-проточный ПН-2–250 200 75 200< 225
6. Токарный с ЧПУ ПН-2–250 120 55 120 < 165
7. Горизонтально-расточный ПН-2–250 120 42 120 < 126
8. Горизонтально-фрезерный ПН-2–250 200 75 200< 225
9. Токарно-винторезный ПН-2–250 150 55 150< 165
10. Радиально-сверлильный ПН-2–250 120 42 120 <126
11. Вертикально-фрезерный ПН-2–250 150 55 150 < 165
12. Бесцентро-шлифовальный ПН-2–400 400 145 400 < 435
13. Шлифовальный ПН-2–250 200 75 200 < 225
14. Горизонтально-шлифовальный ПН-2–400 300 125 300 < 375
15. Вертикально-фрезерный ПН-2–400 250 125 250 < 375
16. Радиально-сверлильный ПН-2–250 150 55 150 < 165
17. Вентустановка ПН-2–100 100 42 100< 126
18. Токарный с ЧПУ ПН-2–250 200 75 200 <225
19. Токарно – револьверный ПН-2–250 200 75 200 <225
20. Токарный полуавтомат ПН-2–250 120 42 200< 126
21. Плоскошлифовальный ПН-2–100 100 42 100< 126
22. Вертикально-фрезерный ПН-2–100 100 42 100< 126
23. Точильно-фрезерный ПН-2–400 300 125 300 <375
24. Электромаслянная ванна ПН-2–100 100 42 100 <126
25. Нагревательная электропечь ПН-2–100 100 42 100 < 126
26. Термическая печь ПН-2–250 200 75 200 < 225
27. Электротермическая печь ПН-2–250 150 55 150< 165
28. Электропечь ПН-2–250 120 42 120 <126
29. Вентустановка ПН-2–100 100 55 100 < 165
30. Точечные стационарные ПН-2–800 800 380 800 < 1140
31. Сварочные стыковые ПН-2–600 500 220 500 <660
32. Сварочные шовные роликовые ПН-2–400 400 180 400 <540
33. Сварочные точечные ПН-2–600 600 300 600 <900
34. Сварочные стационарные ПН-2–400 300 220 300 < 660
35. Вентустановка ПН-2–100 100 42 100 < 126

Следовательно, выбранные предохранители соответствуют условию проверки и выбраны верно.


Информация о работе «Проектирование системы электроснабжения цеха машиностроительного завода»
Раздел: Физика
Количество знаков с пробелами: 67198
Количество таблиц: 28
Количество изображений: 3

Похожие работы

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

Скачать
51487
26
7

... прогрессивные удельные нормы расхода электроэнергии и премиальная система поощрения за ее экономию. 2. Проектирование низковольтного электроснабжения цеха 2.1 Расчет трехфазных электрических нагрузок по первому этапу Определение электрических нагрузок в системе электроснабжения (СЭС) промышленного предприятия выполняют для характерных мест присоединения приёмников электроэнергии. При ...

Скачать
37264
5
20

... от ГПП или ЦРП до цеховых трансформаторных подстанций). Схемы внешнего или внутреннего электроснабжения выполняют с учетом особенностей режима работы потребителей, возможностей дальнейшего расширения производства, удобства обслуживания и т.д. В данном курсовом проекте питание механического цеха осуществляется кабелем, который соединен с алюминиевыми шинами. Через них осуществляется питание ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

0 комментариев


Наверх