9. Построение карты селективности
Карта селективности строится в логарифмическом масштабе: по оси абсцисс откладываются токи – расчетные, пиковые и кз; по оси ординат – времена продолжительности пиковых токов и времена срабатывания защит по защитным характеристикам. Схема питания ЭД представлена на рис. 4. Проверим выбранную коммутационную аппаратуру по условию селективности.
Исходная схема для расчета токов КЗ
Рисунок 6
Схема замещения для определения ТКЗ в точках к, к0 и к1.
Рисунок 7
Определяем сопротивление системы:
хС= Uср2/Sкз= 0,382/200=0,72 мОм
Полное сопротивление силового трансформатора:
zTP= uK Uнн2/Sном.тр = 5,5∙0,382∙104/1000=7,94 мОм
Активное сопротивление СТ
Индуктивное сопротивление СТ
Определяем активные и индуктивные сопротивления элементов сети:
r = L · rуд, мОм и x = L · xуд, мОм
Сопротивление автоматического выключателя QF1
Храсц=0,094 мОм; rрасц=0,12 мОм; rконт=0,25 мОм.
Сопротивление QF2= QF3
Храсц=0,55 мОм; rрасц=0,74мОм; rконт=0,65 мОм.
Сопротивление шин КТП: Rшктп=0,1, Xшктп=0,06
Сопротивление ШМА: Хшма=Хо·lшма= 0,017·60 = 1,02 мОм
rшма=r0·lшма= 0,031·60 = 1,86 мОм
rф-о=0,072 мОм/м, rф-о=0,072·60=4,32 мОм
Хф-о=0,098 мОм/м, Хф-о = 0,098·60=5,88 мОм
Сопротивление ШРА1: Хшра=Хо · lшра= 0,13 · 66 =8,58 мОм
rшра= r0 · lшра= 0,1· 66= 6,6 мОм
Сопротивление кабеля к ШРА1: Хкл=0,06·6 = 0,36 мОм
rкл=0,258·6 = 1,548 мОм
rф-о=1,25 мОм/м, rф-о=1,25·6=7,5 мОм
Хф-о=0,0622 мОм/м, Хф-о = 0,0622·6=0,373 мОм
Сопротивление кабеля 1 к ЭП: r0=0,206 мОм/м Х0=0,0596 мОм/м
Хкл=0,0596·5 = 0,3 мОм
rкл=0,206·5 = 1,03 мОм
Определим токи 3х-фазного К3 в указанных точках.
Точка К
Суммарное сопротивление цепи до точки К
r1Σ = rТР + rQ1 + rшктп+ rконт = 1,734 +0,12 +0,1+0,25=2,204 мОм
х1Σ = хс +хТР + хQ1 +хшктп = 0,72+7,74+0,094+0,06=8,614 мОм
= 8,891 мОм
Ток трехфазного КЗ при металлическом КЗ
кА
Ток трехфазного КЗ при учете переходного сопротивления в месте КЗ
r΄1Σ= r1Σ + rперех= 2,204 + 15 =17,204 мОм
мОм
I(3)к1 =380/1,73·19,37=11,33 кА
Точка К0
Суммарное сопротивление цепи до точки К0
r2Σ = r1Σ+ rQ2 + rконт+ rшма +rперех= 2,204+0,74 +0,65 +1,86 +20=25,454 мОм
х2Σ = х1Σ+ хQ2 + хшма = 8,614+0,55+1,02 +1,06=11,244 мОм
= 27,83 мОм
Ток трехфазного КЗ
кА
Точка К1
Суммарное сопротивление цепи до точки КЗ
r3Σ = r2Σ+ rQ3 + rконт+ rшра +rкл = 25,454+0,74 +0,65 +6,6 +1,548=34,992 мОм
х3Σ = х2Σ+ хQ3 + хшра+хкл= 11,244+0,55+8,58 +0,36=20,734 мОм
= 40,67 мОм
Ток трехфазного КЗ при металлическом КЗ
кА
Точка К1
Суммарное сопротивление цепи до точки КЗ
r4Σ = r΄3Σ+ rклэп + rконт+ rперех = 14,992+1,03 +1,1 +25=42,122 мОм
где r΄3Σ= r3Σ – rперехК3=34,992–20=14,992 мОм
х4Σ = х3Σ+ хклэп+ хконт= 20,734+0,3+0,5=21,534 мОм
= 47,31 мОм
Ток трехфазного КЗ при металлическом КЗ
кА
Расчет токов 1 – но фазного КЗ
Для расчета однофазного кз при наличии ШМА учитывается сопротивление петли фаза-нуль, тогда
Iк= Uн / (Zп+ Zтр/3),
где Zп –полное сопротивление петли фаза-нуль,
Zтр= Zтр1 +Zтр2 + Zтр0 – сопротивление трансформатора, учитывающее прямую, обратную и нулевую последовательность.
Система: Х1с = 0,72 мОм; Х2с = Х1с
СТ: Х1тр = Х2тр = 7,74 мОм; Х0тр = Х1тр – для данной схемы соединения обмоток СТ
Для остальных элементов Х1 = Х2 = Х0; r1 = r2 = r0
Точка К
Суммарное сопротивление цепи до точки К1r1Σ = 3rТР +3 rQ1 +3 rшктп= 3·2,204 =6,612 мОм
х1Σ =2 хс +3хТР + 3хQ1+3 хшктп = 2·0,72+3·8,614 =27,282 мОм
= 28,072 мОм
Ток однофазного КЗ при металлическом КЗ
кА
Ток при учете переходного сопротивления дуги в месте КЗ
r΄1Σ = 3r1Σ= 3 (2,204 +15)=51,612
кА
Точка К0
Суммарное полное сопротивление петли фаза-нуль т. к. есть ШМА
r2п = rQ1 + rшктп+ rQ2 + rшмаф-0+ rперех = 0,12+0,1+0,74+4,32+20 =25,28 мОм
х2п = хQ1 + хшктп+ хQ2 + хшмаф-0= 0,094+0,06+0,55+5,88=6,584 мОм
= 26,123мОм
кА
Точка К1
r3п = r2п + rшраф-0+rклф-0 = 25,28+66·0,1+ 7,5 =39,38 мОм
х3п = х2п + хшраф-0+хклф-0 = 6,584+66·0,129+0,373 =15,471 мОм
= 42,31 мОм
кА
Точка К2
r4п = r3п + rконт+rклэпф-0+rперех = 39,28+1,1+ 1,3+1,25+ 10=52,93 мОм
х4п = х3п + хконт+хклэпф-0 = 15,471+0,5+0,3 =16,271 мОм
Так как в качестве нулевой жилы кабеля используется труба, то сопротивление трубы определим по формуле
мОм
= 55,374 мОм
кА
Потери напряжения определяют по выражению:
Таблица 26. Проверка выбранных шинопроводов по потере напряжения
Элемент сети | Ip, А | L, м | cosφср.взв/sinφ | Сечение, мм | rуд, мОм/м | xуд, мОм/м | ΔU, % |
ШМА | 1101 | 60 6 | 0,5 / 0,866 | 300х160 3х240 | 0,031 0,129 | 0,017 0,0587 | 0,86 0,87 |
ШРА 1 КЛШРА1 | 284,15 | 66 6 | 0,5 / 0,866 | 284х95 3х120 | 0,1 0,258 | 0,13 0,06 | 1,32 0,392 |
Комплектные шинопроводы проверяют на электродинамическую стойкость по условию:
iуд < iуд доп
где – iуд доп = 70 кА
Ударный ток КЗ для ШМА:
где
кА < 70 кА
Таблица 27. Проверка шинопроводов на электродинамическую стойкость
Шинопровод | iуд, кА | i уддоп, кА | Условие проверки |
ШРА1 73–400-У3 | 17,516 | 25 | iуд< iуд.доп, |
ШМА73УЗ-1600 | 50,51 | 70 | iуд< iуд.доп, |
Следовательно, выбранные шинопроводы соответствуют условиям проверки.
Для осуществления проверки по согласованию ШМА с защитой, т.е. с QF2 и ШРА с защитой, т.е. с QF3 необходимо выбрать этот автомат. Выбираем автомат типа АВМ-20Н с номинальным током расцепителя 1200 А. Номинальный ток теплового расцепителя, защищающего от перегрузки выбирается по расчетному току защищаемой линии В соответствии с требованиями автоматические выключатели проверяется по условиям:
Iном. расц > Iр.max и Iср.эл. > (1,25–1,35) Iп
где Iном. расц – номинальный ток расцепителя, А;
Iр.max – наибольший расчетный ток нагрузки, А; Iп – пиковый ток, А
Iср.эл – ток срабатывания электромагнитного расцепителя, равный
Iср.эл = 10 · Iном. расц,
Iп = Iр + (Кп-1) Iном.max,
где Iном. max – наибольший из токов группы ЭП, А;
Iр – расчетный ток группы ЭП, А.
Iнрасц ≥ Iр
... или двигателя. · Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. · Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...
... прогрессивные удельные нормы расхода электроэнергии и премиальная система поощрения за ее экономию. 2. Проектирование низковольтного электроснабжения цеха 2.1 Расчет трехфазных электрических нагрузок по первому этапу Определение электрических нагрузок в системе электроснабжения (СЭС) промышленного предприятия выполняют для характерных мест присоединения приёмников электроэнергии. При ...
... от ГПП или ЦРП до цеховых трансформаторных подстанций). Схемы внешнего или внутреннего электроснабжения выполняют с учетом особенностей режима работы потребителей, возможностей дальнейшего расширения производства, удобства обслуживания и т.д. В данном курсовом проекте питание механического цеха осуществляется кабелем, который соединен с алюминиевыми шинами. Через них осуществляется питание ...
... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...
0 комментариев