9. Построение карты селективности

Карта селективности строится в логарифмическом масштабе: по оси абсцисс откладываются токи – расчетные, пиковые и кз; по оси ординат – времена продолжительности пиковых токов и времена срабатывания защит по защитным характеристикам. Схема питания ЭД представлена на рис. 4. Проверим выбранную коммутационную аппаратуру по условию селективности.

Исходная схема для расчета токов КЗ

Рисунок 6

Схема замещения для определения ТКЗ в точках к, к0 и к1.


Рисунок 7

Определяем сопротивление системы:

хС= Uср2/Sкз= 0,382/200=0,72 мОм

Полное сопротивление силового трансформатора:

zTP= uK Uнн2/Sном.тр = 5,5∙0,382∙104/1000=7,94 мОм

Активное сопротивление СТ

Индуктивное сопротивление СТ

Определяем активные и индуктивные сопротивления элементов сети:

r = L · rуд, мОм и x = L · xуд, мОм

Сопротивление автоматического выключателя QF1

Храсц=0,094 мОм; rрасц=0,12 мОм; rконт=0,25 мОм.

Сопротивление QF2= QF3

Храсц=0,55 мОм; rрасц=0,74мОм; rконт=0,65 мОм.

Сопротивление шин КТП: Rшктп=0,1, Xшктп=0,06

Сопротивление ШМА: Хшмао·lшма= 0,017·60 = 1,02 мОм

rшма=r0·lшма= 0,031·60 = 1,86 мОм

rф-о=0,072 мОм/м, rф-о=0,072·60=4,32 мОм

Хф-о=0,098 мОм/м, Хф-о = 0,098·60=5,88 мОм

Сопротивление ШРА1: Хшрао · lшра= 0,13 · 66 =8,58 мОм

rшра= r0 · lшра= 0,1· 66= 6,6 мОм

Сопротивление кабеля к ШРА1: Хкл=0,06·6 = 0,36 мОм

rкл=0,258·6 = 1,548 мОм

rф-о=1,25 мОм/м, rф-о=1,25·6=7,5 мОм

Хф-о=0,0622 мОм/м, Хф-о = 0,0622·6=0,373 мОм

Сопротивление кабеля 1 к ЭП: r0=0,206 мОм/м Х0=0,0596 мОм/м

Хкл=0,0596·5 = 0,3 мОм

rкл=0,206·5 = 1,03 мОм

Определим токи 3х-фазного К3 в указанных точках.

Точка К

Суммарное сопротивление цепи до точки К

r1Σ = rТР + rQ1 + rшктп+ rконт = 1,734 +0,12 +0,1+0,25=2,204 мОм

х1Σ = хсТР + хQ1шктп = 0,72+7,74+0,094+0,06=8,614 мОм

= 8,891 мОм

Ток трехфазного КЗ при металлическом КЗ

 кА

Ток трехфазного КЗ при учете переходного сопротивления в месте КЗ

1Σ= r1Σ + rперех= 2,204 + 15 =17,204 мОм

 мОм

I(3)к1 =380/1,73·19,37=11,33 кА

Точка К0

Суммарное сопротивление цепи до точки К0

r2Σ = r1Σ+ rQ2 + rконт+ rшма +rперех= 2,204+0,74 +0,65 +1,86 +20=25,454 мОм

х2Σ = х1Σ+ хQ2 + хшма = 8,614+0,55+1,02 +1,06=11,244 мОм

= 27,83 мОм

Ток трехфазного КЗ

 кА

Точка К1

Суммарное сопротивление цепи до точки КЗ

r3Σ = r2Σ+ rQ3 + rконт+ rшра +rкл = 25,454+0,74 +0,65 +6,6 +1,548=34,992 мОм

х3Σ = х2Σ+ хQ3 + хшракл= 11,244+0,55+8,58 +0,36=20,734 мОм

= 40,67 мОм

Ток трехфазного КЗ при металлическом КЗ

 кА

Точка К1

Суммарное сопротивление цепи до точки КЗ

r4Σ = r΄3Σ+ rклэп + rконт+ rперех = 14,992+1,03 +1,1 +25=42,122 мОм

где r΄3Σ= r3Σ – rперехК3=34,992–20=14,992 мОм

х4Σ = х3Σ+ хклэп+ хконт= 20,734+0,3+0,5=21,534 мОм

= 47,31 мОм

Ток трехфазного КЗ при металлическом КЗ

 кА

Расчет токов 1 – но фазного КЗ

Для расчета однофазного кз при наличии ШМА учитывается сопротивление петли фаза-нуль, тогда

Iк= Uн / (Zп+ Zтр/3),

где Zп –полное сопротивление петли фаза-нуль,

Zтр= Zтр1 +Zтр2 + Zтр0 – сопротивление трансформатора, учитывающее прямую, обратную и нулевую последовательность.

Система: Х = 0,72 мОм; Х = Х

СТ: Х1тр = Х2тр = 7,74 мОм; Х0тр = Х1тр – для данной схемы соединения обмоток СТ

Для остальных элементов Х1 = Х2 = Х0; r1 = r2 = r0

Точка К

Суммарное сопротивление цепи до точки К1

r1Σ = 3rТР +3 rQ1 +3 rшктп= 3·2,204 =6,612 мОм

х1Σ =2 хс +3хТР + 3хQ1+3 хшктп = 2·0,72+3·8,614 =27,282 мОм

= 28,072 мОм

Ток однофазного КЗ при металлическом КЗ

 кА

Ток при учете переходного сопротивления дуги в месте КЗ

1Σ = 3r1Σ= 3 (2,204 +15)=51,612

 кА

Точка К0

Суммарное полное сопротивление петли фаза-нуль т. к. есть ШМА

r2п = rQ1 + rшктп+ rQ2 + rшмаф-0+ rперех = 0,12+0,1+0,74+4,32+20 =25,28 мОм

х2п = хQ1 + хшктп+ хQ2 + хшмаф-0= 0,094+0,06+0,55+5,88=6,584 мОм

= 26,123мОм

 кА

Точка К1

r3п = r2п + rшраф-0+rклф-0 = 25,28+66·0,1+ 7,5 =39,38 мОм

х3п = х2п + хшраф-0клф-0 = 6,584+66·0,129+0,373 =15,471 мОм

= 42,31 мОм

 кА

Точка К2

r4п = r3п + rконт+rклэпф-0+rперех = 39,28+1,1+ 1,3+1,25+ 10=52,93 мОм

х4п = х3п + хконтклэпф-0 = 15,471+0,5+0,3 =16,271 мОм

Так как в качестве нулевой жилы кабеля используется труба, то сопротивление трубы определим по формуле

 мОм

= 55,374 мОм

 кА


Потери напряжения определяют по выражению:

Таблица 26. Проверка выбранных шинопроводов по потере напряжения

Элемент сети Ip, А L, м

cosφср.взв/sinφ

Сечение, мм

rуд, мОм/м

xуд, мОм/м

ΔU, %
ШМА 1101

60

6

0,5 / 0,866

300х160

3х240

0,031

0,129

0,017

0,0587

0,86

0,87

ШРА 1

КЛШРА1

284,15

66

6

0,5 / 0,866

284х95

3х120

0,1

0,258

0,13

0,06

1,32

0,392

Комплектные шинопроводы проверяют на электродинамическую стойкость по условию:

iуд < iуд доп

где – iуд доп = 70 кА

Ударный ток КЗ для ШМА:

где

 кА < 70 кА


Таблица 27. Проверка шинопроводов на электродинамическую стойкость

Шинопровод

iуд, кА

i уддоп, кА

Условие проверки
ШРА1 73–400-У3 17,516 25

iуд< iуд.доп,

ШМА73УЗ-1600 50,51 70

iуд< iуд.доп,

Следовательно, выбранные шинопроводы соответствуют условиям проверки.

Для осуществления проверки по согласованию ШМА с защитой, т.е. с QF2 и ШРА с защитой, т.е. с QF3 необходимо выбрать этот автомат. Выбираем автомат типа АВМ-20Н с номинальным током расцепителя 1200 А. Номинальный ток теплового расцепителя, защищающего от перегрузки выбирается по расчетному току защищаемой линии В соответствии с требованиями автоматические выключатели проверяется по условиям:

Iном. расц > Iр.max и Iср.эл. > (1,25–1,35) Iп

где Iном. расц – номинальный ток расцепителя, А;

Iр.max – наибольший расчетный ток нагрузки, А; Iп – пиковый ток, А

Iср.эл – ток срабатывания электромагнитного расцепителя, равный

Iср.эл = 10 · Iном. расц,

Iп = Iр + (Кп-1) Iном.max,

где Iном. max – наибольший из токов группы ЭП, А;

Iр – расчетный ток группы ЭП, А.

Iнрасц ≥ Iр


Информация о работе «Проектирование системы электроснабжения цеха машиностроительного завода»
Раздел: Физика
Количество знаков с пробелами: 67198
Количество таблиц: 28
Количество изображений: 3

Похожие работы

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

Скачать
51487
26
7

... прогрессивные удельные нормы расхода электроэнергии и премиальная система поощрения за ее экономию. 2. Проектирование низковольтного электроснабжения цеха 2.1 Расчет трехфазных электрических нагрузок по первому этапу Определение электрических нагрузок в системе электроснабжения (СЭС) промышленного предприятия выполняют для характерных мест присоединения приёмников электроэнергии. При ...

Скачать
37264
5
20

... от ГПП или ЦРП до цеховых трансформаторных подстанций). Схемы внешнего или внутреннего электроснабжения выполняют с учетом особенностей режима работы потребителей, возможностей дальнейшего расширения производства, удобства обслуживания и т.д. В данном курсовом проекте питание механического цеха осуществляется кабелем, который соединен с алюминиевыми шинами. Через них осуществляется питание ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

0 комментариев


Наверх