Изучите электроизмерительные приборы, используемые в рабо­те, и запишите их паспортные данные

Электричество и магнетизм
Изучите электроизмерительные приборы, используемые в рабо­те, и запишите их паспортные данные Аналогично определите чувствительность вертикально отклоняющих пластин, подавая напряжение на клеммы У Построить график зависимости lnR=f(1/T), откладывая зна­чения 1/Т по горизонтальной оси, a In R - по вертикальной Собрать схему по рис. 2. Включать схему в цепь только с разрешения преподавателя! Соберите цепь по схеме, указанной на рис. 3 Включить в сеть измеритель магнитной индукции (тесламетр, рис. 4). При необходимости провести установку нуля тесламетра Метод магнитной фокусировки Газоразрядную трубку расположите так, чтобы электронный пучок был направлен параллельно виткам катушек, при этом светящийся пучок примет вид кольца; Для каждого значения тока вычислить значения Н и В Поменять полярность источника, увеличивая обратный ток, перевести образец снова в насыщенное состояние По формуле (13) вычислить индуктивность L катушки, под­ставляя в неё значения R и <Z> Построить график зависимости логарифмического декремента затухания от сопротивления контура
189451
знак
18
таблиц
0
изображений

1.  Изучите электроизмерительные приборы, используемые в рабо­те, и запишите их паспортные данные.

2.  Соберите цепь по схеме рис. I и найдите сопротивление Rx´ каждого из двух предложенных вам резисторов.

3.  Определите значение измеряемого сопротивления Rx по фор­муле (2).

4.  Рассчитайте абсолютные ΔRxи системати­ческие относительные погрешности δ по формулам (3) и (4).

5.  Результаты измерений и вычислений запишите в таблицу:

I, A U, B

Rx´, Ом

Rx, Ом

Δ Rx, Ом

δ ΔR, Ом ε

6.   Соберите цепь по схеме рис. 2 и найдите сопротивление Rx´ каждого из двух предложенных вам резисторов.

7.  Определите значение измеряемого сопротивления Rx по фор­муле (6).

8.  Рассчитайте абсолютные ΔRxи системати­ческие относительные погрешности δ по формулам (7) и (8).

9.  Результаты измерений и вычислений запишите в таблицу:

I, A U, B

Rx´, Ом

Rx, Ом

Δ Rx, Ом

δ ΔR, Ом ε

10.  Выберите, какая из схем даёт минимальную систематическую погрешность измерения δ для каждого из данных сопротивлений

11.  По классу точности вольтметра и амперметра вычислите абсолютную ΔR и относительную ε ошибки, обусловленные неточностями измерительных приборов, используемых в работе. От­носительная погрешность

, (11)

где Δ U и ΔI - абсолютные погрешности, вычисленные по форму­ле (10), а U и I - измеренные значения напряжения и тока. Из формулы (11) найдите абсолютную ошибку Δ R = ε∙Rx

12.   Запишите окончательное значение сопротивления резисторов в виде:

R= Rx±ΔR.

 

Контрольные вопросы

 

1.  Как классифицируются электроизмерительные приборы по назначению и принципу действия?

2.  Каков принцип работы приборов магнитоэлектрической, электромагнитной системы и цифровых приборов?

3.  Расшифруйте условные обозначения, наносимые на приборы.

4.  Как рассчитать по классу точности прибора абсолютную и относительную погрешности измерений?

5.  Как определить цену деления шкалы прибора?

6.  Правила расчета шунтов и добавочных сопротивлений.

7.  Расскажите о методе измерения сопротивления резисторов с помощью амперметра и вольтметра путем использования двух возможных схем.

8.  Какие еще методы измерения сопротивления вы знаете, в чем их преимущества и недостатки?

9.  Как рассчитать ошибки, вносимые схемой в результаты измерения, и как выбрать оптимальную схему, по которой следует производить измерение данного сопротивления?

 

Литература, рекомендуемая к лабораторной работе:

 

1.  Рублев Ю.В., Куценко А.Н., Кортнев А.В. Практикум по электричеству. – М.: Высшая школа, 1971.

2.  Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.

3.  Справочник по электро-измерительным приборам. Под ред. К.К. Илюнина-Л.: Энергоатомиздат, 1983г.


ЛАБОРАТОРНАЯ РАБОТА №2

ИЗУЧЕНИЕ ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА

 

Цель работы:

 

Ознакомиться с устройством и работой электрон­ного осциллографа и некоторыми его применениями.

 

Идея эксперимента

 

Электронный осциллограф предназначен для исследования перио­ дических и импульсных электрических процессов. С помощью осциллографа можно измерять напряжение, наблюдать изменение фазы ко­лебаний, сравнивать частоты и амплитуды различных переменных на­пряжений. Кроме того, осциллограф при применении соответствующих преобразователей позволяет исследовать и неэлектрические процес­сы, например, измерять малые промежутки времени, кратковременные давления и т.д.

Достоинствами электронного осциллографа являются его высокая чувствительность и беэынерционность действия, что позволяет ис­пользовать его в исследовании быстропротекающих процессов.

Теоретическая часть

 

Блок-схема электронного осциллографа приведена на рис. I. Основными узлами осциллографа являются: электронно-лучевая трубка (ЭЛТ), генератор

развёртки, усилители исследуемого сигнала по вертикали У и горизонтали X, синхронизирующее устройство, де­литель напряжения, блок питания, который включает в себя ряд устройств для обеспечения энергией ЭЛТ, генератора развертки, усилителей.

Электронно-лучевая трубка (рис.2) внешне напоминает стеклянную колбу,из которой выкачан воздух до давления порядка 10-6 мм. рт. ст. Внутрь трубки впаяны электроды: нить накала 1, катод 2, цилиндр 3, являющийся управляющим электродом, первый и второй аноды 4 и 5 и две пары взаимно-перпендикулярных отклоняющий пластин 6 и 7

Электроны, вылетевшие из катода 2 под разными углами к его поверхности, попадают в электрическое поле управляющего электрода 3. Этот электрод имеет форму цилиндра и обладает положительным потенциалом. Под действием сил электрического поля поток электронов сжимается и направляется в отверстие цилиндра. Так формируется электронный пучок. Интенсив­ность пучка и, следовательно, яркость светящегося пятна на экра­не можно регулировать изменением потенциала цилиндра с помощью потенциометра R1, ручка которого имеет маркировку ЯРКОСТЬ.

После управлявшего электрода электронный поток попадает в электрическое поле первого анода 4, представляющего собой, как и управляющий электрод, цилиндр, ось которого совпадает с осью ЭЛТ. Поперёк его оси расположено несколько перегородок - диафрагм с отверстием в центре. На первый анод подаётся положительное отно­сительно катода напряжение порядка нескольких сот вольт. Это по­ле ускоряет электроны в пучке и благодаря своей конфигурации сжимает электронный пучок. Изменяя напряжение на первом аноде, можно фокусировать пучок электронов, поэтому ручка потенциометра Р3 имеет маркировку ФОКУС. Второй анод 5 представляет собой ко­роткий цилиндр с отверстием в центре. Его располагают непосред­ственно за первым анодом и подают на него более высокое (1-5 кВ) положительное напряжение, в результате чего электроны получают ускорение. Система электродов: катод - управляющий электрод - первый анод - второй анод, образует так называемую электронную пушку.

Выйдя из второго анода, электронный луч проходит между двумя парами металлических пластин 6 и 7. Если к любой паре пластин приложить разность потенциалов, то электронный луч будет откло­няться в вертикальном или горизонтальном направлении. Под дей­ствием положительного напряжения Ux след электронного луча сме­щается на величину x в горизонтальном направлении, а под дей­ствием напряжения Uy - на величину y в вертикальном направле­нии. Величины

(1)

называются чувствительностями трубки к напряжению соответственно в направлениях осей X и У. Чувствительность к напряжению показы­вает величину отклонения электронного луча на экране (в мм) при разности потенциалов на пластинах в I В. При постоянном анодном напряжении величины jx и jy для данной ЭЛТ постоянны.

 Генератор развёртки один из основных узлов осциллографа. Если на вертикально отклоняющие пластины ЭЛТ подать исследуе­мое переменное напряжение, то электронный луч начнёт колебаться в вертикальном направлении и оставит на экране трубки светящуюся вертикальную линию.

Для получения на экране трубки действительной формы исследуе­мого напряжения Uy=f(t) , т.е. временных осциллограмм, нужно на горизонтально отклоняющие пластины одновременно с исследуемым, подать напряжение, пропорциональное времени Ux=kt.

В осциллографе такое напряжение вырабатывается генератором развёртки. Импульсы этого напряжения имеют пилообразную форму, график которого показан на рис. 3. Напряжение в течение промежутка времени Tразвертки линейно уве­личивается, а затем почти мгновенно падает до первоначального значения.

 Время Tразвертки называется периодом пилообразного напря­жения, или периодом развёртки.

Если исследуемое напряжение меняется, например, синусоидально с периодом Тиссл., то луч будет колебаться в вертикальном напра­влении и при этом плавно перемещаться в горизонтальном направ­лении слева направо.

Результирующая траектория луча будет пред­ставлять собой синусоиду. При равенстве периодов Тиссл = Tразвертки на экране получается один период исследуемого напряжения. Если увеличить период развёртки вдвое, то за время развёртки луч успеет совершить два полных колебания в вертикальном направлении и на экране мы увидим два периода исследуемого напряжения. Когда Tразвертки = nТиссл (n- целое число), осциллограмма будет представ­лять собой кривую из n периодов исследуемого напряжения. Если период развёртки Tразвертки не является целым кратным периода Тиссл изучаемого напряжения, то электронный луч будет начинать движе­ние слева направо каждый раз в различных фазах и на экране осци­ллографа картина будет неустойчивой. Чтобы добиться устойчивой картины, нужно частоту развёртки (или её период) сделать равной или кратной частоте исследуемого напряжения (или его периоду). Для того, чтобы развёртка изображения начиналась каждый раз в одинаковой фазе, генератор развёртки запускается сигналом, кото­рый вырабатывается блоком синхронизации.

Органы управления осциллографом

 

1.  Вход У;

2.  Регулировка положения луча по горизонтали;

3.  Вход Х;

4.  Отключение генератора развертки.

Проведение эксперимента

 

Задание 1. Определение чувствительности трубки к напряжению

1.  Соберите схему по рис. 5;

2.  Ручку регулятора напряжения ВУП - 2 поставьте в крайнее левое положение;

3.  Включите источник, установите напряжение U = 30 В. Световая точка сме­стится по оси Х на какое-то расстоя­ние x1.

4.  С помощью переключателя К измените полярность пластин, при эт­ом световая точка сместится в проти­воположную сторону от начала коорди­нат на расстояние x2;

5.  Вычислите чув­ствительность горизонтально отклоня­ющих пластин по формуле:  где


Информация о работе «Электричество и магнетизм»
Раздел: Физика
Количество знаков с пробелами: 189451
Количество таблиц: 18
Количество изображений: 0

Похожие работы

Скачать
104776
0
13

... , хотя ему уже придавали иной смысл, нежели тот, который вкладывал в него Кулон.Введение понятия потенциалав электростатику Открытие закона Кулона было очень важным шагом в развитии учения об электричестве и магнетизме. Это был первый физический закон, выражающий количественные соотношения между физическими величинами в учении об электричестве и магнетизме. С помощью этого закона можно было ...

Скачать
166869
1
15

... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...

Скачать
28183
0
1

... в магнитном поле компасной стрелки в нем появляются токи, которые создают свое магнитное поле. Взаимодействие двух магнитных полей и дает «магнетизм вращения». «Теперь, – записал в своей рабочей тетради Фарадей, – когда мы знаем о существовании этих токов, явления, открытые Араго, можно объяснить, не приписывая их тому, что в меди образуется полюс, противоположный приближающемуся». Диск и магнит ...

Скачать
28875
0
0

... термин «электрический ток», понятие о направлении электрического тока и за полтора века предсказал возникновение науки об общих закономерностях процесса управления, связи и организованных системах – кибернетики. Ньютон электричества Звездный час в жизни Ампера наступил в сентябре 1820 г., когда он впервые узнал об открытии датским физиком Г. Х. Эрстедом (1819) действия электрического тока на ...

0 комментариев


Наверх