Включить в сеть измеритель магнитной индукции (тесламетр, рис. 4). При необходимости провести установку нуля тесламетра

Электричество и магнетизм
Изучите электроизмерительные приборы, используемые в рабо­те, и запишите их паспортные данные Аналогично определите чувствительность вертикально отклоняющих пластин, подавая напряжение на клеммы У Построить график зависимости lnR=f(1/T), откладывая зна­чения 1/Т по горизонтальной оси, a In R - по вертикальной Собрать схему по рис. 2. Включать схему в цепь только с разрешения преподавателя! Соберите цепь по схеме, указанной на рис. 3 Включить в сеть измеритель магнитной индукции (тесламетр, рис. 4). При необходимости провести установку нуля тесламетра Метод магнитной фокусировки Газоразрядную трубку расположите так, чтобы электронный пучок был направлен параллельно виткам катушек, при этом светящийся пучок примет вид кольца; Для каждого значения тока вычислить значения Н и В Поменять полярность источника, увеличивая обратный ток, перевести образец снова в насыщенное состояние По формуле (13) вычислить индуктивность L катушки, под­ставляя в неё значения R и <Z> Построить график зависимости логарифмического декремента затухания от сопротивления контура
189451
знак
18
таблиц
0
изображений

1.  Включить в сеть измеритель магнитной индукции (тесламетр, рис. 4). При необходимости провести установку нуля тесламетра.

2.  Подать на обмотку соленоида ток I1 = 5 – 7 А от источника постоянного тока.

3.  Произвести измерения магнитной индукции В при помощи длинного щупа тесламетра поля в разных точках поля внутри и вне соленоида, перемещая датчик от нижнего края соленоида вверх.

4.  Построить график зависимости Вэксп. (х), где х – расстояние от нижнего края соленоида до исследуемой точки, измеренное по шкале щупа..

5.  На полученном графике построить в том же масштабе теоретическую кривую зависимости Втеор. (х) , пользуясь следующей расчетной формулой:  , где  - длина соленоида, х- расстояние от края соленоида до исследуемой точки, R- радиус соленоида , n - число витков на единицу длины соленоида .

6.  Исследовать зависимость индукции поля внутри соленоида от силы тока в обмотке (вблизи середины соленоида) и построить график зависимости Вэксп.(I).

7.  В том же масштабе построить теоретическую кривую Bтеор.(I), рассчитав В по выше приведенной формуле.

Измерение магнитного поля между полюсами электромагнита

1.  Подать на электромагнит ток от источника постоянного тока.

2.  Произвести измерения индукции магнитного поля между полюсами электромагнита, используя короткий щуп тесламетра, начиная от верхнего края катушек.

3.  Построить график зависимости В(х), где х – расстояние от верхнего края катушек до данной точки.

Контрольные вопросы

 

1.  Что такое магнитное поле, его характеристики (напряженность, магнитная индукция).

2.  Линии напряженности магнитного поля и его вихревой характер.

3.  Закон Био-Савара-Лапласа, магнитная постоянная.

4.  Напряженность магнитного поля в центре кругового тока, прямого тока и бесконечного соленоида.

5.  Магнитное поле движущегося заряда.

6.  Взаимодействие электрических токов.

7.  Магнетизм Земли.

8.  Экспериментальная установка и методика проведения эксперимента.

 

Литература, рекомендуемая к лабораторной работе:

 

1.  Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2.  Калашников С.Г. Электричество. – М.: Наука, 1977.

3.  Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

4.  Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

5.  Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

6.  Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001

7.  Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

8.  Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

9.  Рублев Ю.В., Куценко А.Н., Кортнев А.В. Практикум по электричеству. – М.: Высшая школа, 1971.

10.  Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.


ЛАБОРАТОРНАЯ РАБОТА № 11

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА

РАЗЛИЧНЫМИ МЕТОДАМИ

 

Цель работы:

Научиться определять удельный заряд электрона, используя законы движения заряженных частиц в электрических и магнитных полях.

 

Идея эксперимента

 

Отклонение, испытываемое заряженными частицами в электрическом и магнитном полях, существенно зависит от величины удельного заряда частиц. Поэтому, измеряя это отклонение, можно определить удельный заряд частиц e/m. В зависимости от того, известна или неизвестна скорость частиц, приходится поступать по-разному. Если скорость частиц известна или может быть определенным образом задана в эксперименте, то достаточно измерить лишь одно из отклонений – либо в магнитном, либо в электрическом поле. Если же неизвестны и удельный заряд частиц e/m, и их скорость υ, то требуется применение и электрического, и магнитного отклонений, так как для определения двух неизвестных необходимы два соотношения. Примером методов первой группы может служить метод магнитной фокусировки для определения удельного заряда термоэлектронов. Примером второй группы является метод взаимно перпендикулярных магнитного и электрического полей, осуществляемых в магнетроне и газоразрядной трубке.

Теоретическая часть

Движение заряженных частиц в однородном электрическом поле. Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряженностью Е, и магнитное поле с индукцией В, то на нее действует сила Лоренца. Поэтому, согласно второму закону Ньютона, уравнение частицы имеет вид

m dυ/dt= eE + e [uB]. (1)

Написанное векторное уравнение распадается на три скалярных, каждое из которых описывает движение вдоль соответствующей координатной оси.

Предположим, что заряженные частицы, двигающиеся первоначально вдоль оси X со скоростью υ0,попадают в электрическое поле плоского конденсатора (рис 1). Если зазор между пластинами мал по сравнению с их длиной l, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем: Ex=Ez= 0, Ey= E. Так как магнитного поля нет, то Bx=By=Bz= 0.

В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид

 .  (2)

Рис.1

 
Движение частиц в этом случае происходит под действием постоянной силы подобно движению горизонтально брошенного тела в поле тяжести, поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол  (рис. 1), на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (2), находим

υx=υ0.

Интегрирование второго уравнения дает

Vy=Et + C,

где

t = l/υ0

есть время нахождения частицы в электрическом поле, а С - постоянная интегрирования. Так как при t=0 ( момент вступления частицы в конденсатор) υy=0, то С=0, поэтому

 υy=,

отсюда получаем для угла отклонения θ

tg  = .

Отклонение пучка существенно зависит от величины удельного заряда частиц e/m.

Движение заряженных частиц в однородном магнитном поле.

Пусть частица, обладающая начальной скоростью v0, попадает в магнитное поле с индукцией B. Это поле мы будем считать однородным и направленным перпендикулярно к скорости v0 (рис.2).

Прежде всего, отметим, что действующая на частицу сила всегда перпендикулярна к скорости движения частицы. Это значит, что работа силы всегда равна нулю; следовательно, абсолютное значение скорости движения частицы, а значит, и энергия частицы остаются постоянными при движении. Та как скорость частицы v не изменяется, то величина силы  

F = eυB

остается постоянной. Эта сила, будучи перпендикулярной к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием

2/r = eυB.

откуда

 . (3)

Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы. Действительно, период обращения равен

.

Подставляя сюда вместо r его выражение (3), имеем

.  (4)

Для данного типа частиц и период, и частота зависят только от индукции магнитного поля.

Выше мы предполагали, что направление начальной скорости перпендикулярно к направлению индукции магнитного поля. Пусть теперь начальная скорость частицы составляет некоторый угол a с направлением поля (рис. 3). В этом случае удобно разложить скорость u0 на две составляющие, одна из которых  параллельна полю, а другая  перпендикулярна полю. На частицу действует сила Лоренца, обусловленная составляющей un, и частица движется по окружности, лежащей в плоскости, перпендикулярной полю. Составляющая utне вызывает появления добавочной силы, так как сила Лоренца при движении частицы параллельно полю равна нулю. Поэтому в направлении поля частица движется равномерно, со скоростью . В результате сложения обоих движений частица будет двигаться по цилиндрической спирали, изображенной на рис. 3. Шаг винта этой спирали

.

Подставляя вместо Т его выражение (4) , имеем

(5)

Рассмотрим случай, когда углы α невелики ( cosα≈1). В этих условиях можно записать

. (6)

Таким образом, путь, пройденный электроном в магнитном поле за один оборот, не зависит от угла α (для малых углов). Из этого следует, что все электроны, вышедшие из одной точки под небольшими, но разными углами к магнитному полю, после одного оборота вновь соберутся в одной точке (сфокусируются). Положение фокуса меняется при изменении величины магнитной индукции В. Для осуществления эксперимента электроны разгоняются в электрическом поле с разностью потенциалов U и приобретают кинетическую энергию

2/2 = eU (7)

Из формул 6 и 7 можно найти соотношение для определения удельного заряда электрона:

e/m = 8π2U/h2B2 (8)

Магнетрон.

Магнетрон представляет собой двуэлектродную лампу, содержащую накаливаемый катод и холодный анод и помещаемую во внешнее магнитное поле. Это поле создается либо катушками с током, либо электромагнитом, между полюсами которого помещается магнетрон.

На практике применяют цилиндрические магнетроны. Их анод представляет собой металлический цилиндр, а катод имеет также цилиндрическую форму и расположен на оси анода. Пути электронов в цилиндрическом магнетроне имеют сложную форму; они изображены на рис 4. Для каждого данного напряжения U между катодом и анодом существует некоторое критическое значение магнитной индукции Вк, при котором траектории электронов как раз касаются поверхности анода. Если В<Вк, то все электроны доходят до анода и ток через магнетрон имеет то же значение, что и без магнитного поля. Если же В>Вк ,тониодин электрон не достигает анода и ток через лампу равен нулю. Соответствующий расчет показывает, что критическое значение магнитной индукции в цилиндрическом магнетроне определяется выражением

, ( 9)

где a- радиус катода, b- радиус анода. Отметим также, что значение Bк не изменяется под действием пространственного заряда и имеет одно и тоже значение как в режиме насыщения, так и в режиме пространственного заряда.

Подобные измерения приводят к тем же значениям e/m для термоэлектронов, что и найденные по методу магнитной фокусировки, а также другими способами.

До сих пор мы предполагали, что все электроны покидают катод с начальной скоростью равной нулю. В этом случае при В<Bкр все электроны, без исключения, попадали бы на анод, а при В>Вкр все они не достигали бы анода. Анодный ток Iа c увеличением магнитного поля изменился бы так, как это показано на рис. 5 штриховой линией.

Ia

 
На самом деле электроны, испускаемые нагретым катодом, обладают различными скоростями. Критические условия достигаются для различных электронов при различных значениях В. Кривая зависимости Iа=f(B) приобретает вследствие этого вид сплошной линии на рис. 5 Кроме того, невозможно обеспечить полную коаксиальность анода и катода, в реальных условиях вектор индукции магнитного поля несколько наклонён по отношению к катоду.

Если магнитное поле создаётся с помощью соленоида, то индукция магнитного поля В пропорциональна току соленоида I. В этом случае определяют зависимость анодного тока лампы Iа от тока соленоида I и строят график Iа=f(I), который называется сбросовой характеристикой. По этому графику, аналогичному изображённому на рис.5, определяют критический ток Iкр, а затем вычисляют критическое поле Вкр .

Устройство газоразрядной трубки и принцип получения видимого электронного пучка

 

 Газоразрядная трубка с накаливаемым катодом служит для получения видимого электронного пучка. Внутри газоразрядной трубки, имеющей форму шара, находится система электродов , называемая электронной пушкой, для получения и фокусировки потока электронов.

В электронную пушку входит накаливаемый катод К, модулятор Мод и анод А.(Рис. 6)

Эмитируемые раскалённым катодом электроны ускоряются электрическим полем и, за счёт определённой формы электрического поля между катодом, модулятором и анодом, собираются в электронный пучок.

Для получения видимого электронного пучка и дальнейшей фокусировки электронов служит водород, поступающий из водородного генератора, который находится рядом с электронной пушкой. Водородный генератор представляет собой полый цилиндр из гидрида титана, внутри которого расположена нить накала.

При обычных температурах водородный генератор поглощает большое количество водорода, а при нагревании отдаёт его обратно. В зависимости от температуры накала водородный генератор выделяет в трубку такое количество водорода, которое способствует газовой фокусировке электронов. Суть газовой фокусировки заключается в следующем: электроны, вылетевшие с катода и ускоренные электрическим полем, ионизируют атомы водорода. Образующийся положительный заряд ионов за счёт кулоновских сил притяжения компенсирует силы отталкивания между электронами, удерживая их в узком пучке.

Для создания магнитного поля применяются катушки Гельмгольца. Они располагаются так, что электронный пучок находится в области однородности магнитного поля катушек.

Соответствующие расчеты для определения удельного заряда электрона дают формулу вида:

(10)

где  - ускоряющее напряжение на аноде.,  - радиус окружности, по которой движутся электроны, B- индукция магнитного поля.

 

Экспериментальные установки

 


Информация о работе «Электричество и магнетизм»
Раздел: Физика
Количество знаков с пробелами: 189451
Количество таблиц: 18
Количество изображений: 0

Похожие работы

Скачать
104776
0
13

... , хотя ему уже придавали иной смысл, нежели тот, который вкладывал в него Кулон.Введение понятия потенциалав электростатику Открытие закона Кулона было очень важным шагом в развитии учения об электричестве и магнетизме. Это был первый физический закон, выражающий количественные соотношения между физическими величинами в учении об электричестве и магнетизме. С помощью этого закона можно было ...

Скачать
166869
1
15

... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...

Скачать
28183
0
1

... в магнитном поле компасной стрелки в нем появляются токи, которые создают свое магнитное поле. Взаимодействие двух магнитных полей и дает «магнетизм вращения». «Теперь, – записал в своей рабочей тетради Фарадей, – когда мы знаем о существовании этих токов, явления, открытые Араго, можно объяснить, не приписывая их тому, что в меди образуется полюс, противоположный приближающемуся». Диск и магнит ...

Скачать
28875
0
0

... термин «электрический ток», понятие о направлении электрического тока и за полтора века предсказал возникновение науки об общих закономерностях процесса управления, связи и организованных системах – кибернетики. Ньютон электричества Звездный час в жизни Ампера наступил в сентябре 1820 г., когда он впервые узнал об открытии датским физиком Г. Х. Эрстедом (1819) действия электрического тока на ...

0 комментариев


Наверх