8. Для каждого значения тока вычислить значения Н и В.
9. По полученным данным для каждого значения поля вычислить магнитную проницаемость по формуле .
10. Результаты измерений и вычислений занести в таблицу:
№ | I, А | nx, дел. | ny, дел | H, А/м | Uy, В | В, Тл | μ |
11. Построить графики функций: B= f(H) и μ=f(H).
12. С помощью графиков определить остаточную индукцию Bо , коэрцитивную силу Нк .
ПРИМЕЧАНИЕ: для расчётов искомых величин использовать следующие данные: число витков N1= 200, N2 = 600, длина средней линии тороида l = 354 мм, диаметр тороида d= 12мм.
Контрольные вопросы
1. Магнитное поле и его характеристики. Теория магнитных полей
2. Магнитные свойства вещества. Постоянные магниты. Теория магнетизма.
3. Магнетики и их классификация.
4. Теория ферромагнетизма.
5. Кривая намагничивания.
6. Явления магнитного гистерезиса. Петля гистерезиса, физический смысл площади петли.
7. Какова зависимость магнитной проницаемости от .
8. Как на экране осциллографа получить устойчивую петлю гистерезиса.
9. Применение магнитных материалов.
Литература, рекомендуемая к лабораторной работе:
1. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.
2. Калашников С.Г. Электричество. – М.: Наука, 1977.
3. Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.
4. Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.
5. Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.
6. Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001
7. Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.
8. Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.
9. Рублев Ю.В., Куценко А.Н., Кортнев А.В. Практикум по электричеству. – М.: Высшая школа, 1971.
10. Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.
11. Буравихин В.А., Шелковников В.Н., Карабанова В.П. Практикум по магнетизму. – М.: Высшая школа, 1979.
12. Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.
ЛАБОРАТОРНАЯ РАБОТА № 13
ДОМЕННАЯ СТРУКТУРА ФЕРРОМАГНЕТИКА
Цель работы:
Изучение доменной структуры и измерение магнитных характеристик тонких ферромагнитных пленок магнитооптическим методом.
Идея эксперимента
При прохождении плоскополяризованного света через ферромагнитную пленку происходит поворот плоскости поляризации на некоторый угол φ=kJd, где k - постоянная Кундта, J –намагниченность вещества, d – толщина пленки. Направление вращения плоскости поляризации зависит от направления намагниченности ферромагнитной пленки, что позволяет использовать этот эффект для наблюдения доменной структуры ферромагнитных образцов. В процессе перемагничения такого образца может оказаться, что вектора намагничения двух соседних доменов антипараллельны. Тогда вращение плоскости поляризации световых пучков, прошедших через домены с разным направлением намагниченности, будут происходить во взаимно противоположных направлениях. Поместив на пути пучка света анализатор, можно наблюдать доменную структуру образца в виде темных и светлых областей. Такой метод исследования доменной структуры ферромагнитного образца позволяет не только изучать процесс перемагничения, но и измерять такие магнитные характеристики тонкопленочных образцов, как поле коэрцитивной силы и поле магнитной анизотропии.
Теоретическая часть
Вещества, для которых магнитная восприимчивость намного больше единицы, называются ферромагнетиками. Ферромагнетики при температурах ниже точки Кюри разбиваются на большое число малых макроскопических областей – доменов, самопроизвольно намагниченных до насыщения. Доменная структура наблюдаются на прозрачных монокристаллических пленках редкоземельных ферритов со структурой граната R3Fe5O12 толщиной h=5—10 мкм, имеющих ось легкого намагничивания, ориентированную по нормали к поверхности пленки. Состояние намагниченности образца выявляется с помощью магнитооптического эффекта Фарадея, заключающегося в том, что при прохождении плоско поляризованного света через намагниченное тело плоскость поляризации поворачивается на угол φ, пропорциональный компоненте намагниченности вдоль светового луча и длине пути h света в магнетике.
Антипараллельно намагниченные соседние домены поворачивают плоскость поляризации на углы +φ и -φ соответственно. Поворотом анализатора можно погасить свет от доменов с одним направлением намагниченности, т. е. получить контрастное изображение доменной структуры. Изменение намагниченности образца вызовет изменение светового потока.
Зависимость намагниченности ферромагнетиков J от приложенного магнитного поля Н имеет нелинейный и неоднозначный характер. Такое поведение ферромагнетиков в магнитном поле обусловлено существованием в них доменов, объем и ориентация намагниченности которых изменяются под действием внешнего поля. Этот процесс называют техническим намагничиванием. Равновесная магнитная структура ферромагнетика определяется из условия минимума энергии тела в целом, с учетом его формы и размеров. Энергия W ферромагнитного тела в магнитном поле Н может быть представлена в виде суммы членов, характеризующих различные виды магнитного взаимодействия
w=wa+wh+wm+wk
Здесь wa — энергия обменного (квантового) взаимодействия между магнитными моментами соседних атомов, ответственная за образование спонтанной намагниченности Js (в ферромагнетиках эта энергия минимальна, когда магнитные моменты всех атомов ориентированы параллельно друг другу); Wн — энергия магнетика во внешнем поле (минимальная при ориентации магнитного момента образца вдоль поля Н); wm — магнитостатическая энергия поля рассеяния, вызванного образованием магнитных полюсов на поверхности намагниченного тела.
На рис 1а изображен ферромагнетик, состоящий из одного домена. В этом случае во внешнем пространстве возникает магнитное поле, которое заключает в себе определенную магнитную энергию. На рис 1б имеются два домена с противоположным направлением намагничения. Внешнее магнитное поле здесь убывает с увеличением расстояния быстрее, чем в случае а, и энергия, заключенная в поле, оказывается меньше. В случае, показанном на рис 1в, магнитное поле практически существует только в непосредственной близости от поверхности магнетика и энергия поле еще уменьшается. На рис 1г изображен случай, когда во внешнем пространстве магнитного поля совсем нет. Здесь имеются «замыкающие» домены в форме трехгранных призм, боковые поверхности которых везде составляют угол 45˚ с вектором намагничения. Вследствие этого магнитный поток проходит исключительно внутри ферромагнетика, он замыкается граничными доменами, чем и обусловлено их название замыкающие домены. Состояние г энергетически более выгодно, чем предыдущее состояние. На рис 1д показана совокупность доменов совместно с замыкающими их доменами, у которых также нет внешнего поля. Таким образом, разбиение ферромагнетика на домены происходит потому, что при образовании доменных структур энергия ферромагнетика уменьшается.
Между соседними доменами имеются сравнительно узкие (порядка 102-103 межатомных расстояний) переходные слои, которые называются доменными границами (или стенками). В этих слоях направление JS постепенно изменяется на противоположное. Толщина граничного слоя определяется условиями равновесия между силами анизотропии, стремящимися сузить стенку, и квантовыми обменными силами, стремящимися расширить ее. В многодоменном образце энергия доменных границ будет тем больше, чем больше общая площадь границ.
Рассмотрим магнитоодноосный кристалл в виде пластинки с осью легкого намагничивания (ОЛН), перпендикулярной плоскости образца. В однодоменном состоянии намагниченная до насыщения пластинка имеет энергию W,. равную максимальной магнитостатической энергии
wm=μ0JS2V/2.
Если намагниченность лежит в плоскости пластинки, то wm=0 и энергия w=wk=kv,
где V — объем образца. Энергия образца будет значительно снижена, если он будет размагничен, т. е. объем его будет разбит, например, на слоистые домены.
Сравним два варианта доменной структуры: а) «замкнутая» структура и б) «открытая» структура. Оценим энергию каждого варианта структуры, предполагая, что ширина доменов мала по сравнению с толщиной пластинки h.
В замкнутой доменной структуре магнитный поток полностью замкнут, поле рассеяния отсутствует и, следовательно, Wмa=0. Полная энергия W складывается из энергии доменных границ Wr и энергии анизотропии wk° замыкающих доменов. Число границ, приходящихся на единицу площади поверхности пластинки, равно 1/D, их площадь приближенно равна h/D. Удельная энергия доменных границ
Wr/So=σrh/D. (1)
В замыкающих доменах Js лежит по трудной оси (направление перпендикулярное оси легкого намагничения), и здесь объемная плотность энергии анизотропии равна К. Замыкающие домены имеют форму треугольных призм сечением D2/4, которые расположены на обеих поверхностях пластинки. Следовательно,
(2)
Энергия замкнутой доменной структуры, отнесенная к единице площади поверхности пластинки, равна
(3)
Здесь σr- поверхностная плотность энергии границ, имеющая размерность Дж/м2. В большинстве ферромагнетиков σr порядка 10-3–10-2Дж/м2. Оптимальная (равновесная) ширина доменов D0 определяется из условия минимума энергии Wа(D), т.е. из условия dWa/dD=0;
(4)
Подставив D0a в (3), получим минимальное значение энергии для замкнутой структуры:
(5)
Используя (4), можно исключить σrи получить
(6)
В открытой доменной структуре намагниченность JS всюду лежит по ОЛН, т.е. энергия анизотропии WKб =0. Энергия системы складывается из магнитостатической энергии и энергии доменных границ. Для случая, когда D во много раз меньше толщины образца h, Киттель получил выражение
(7)
Во многодоменном образце необходимо учитывать энергию доменных границ, которая тем больше, чем больше объемная площадь границ Sr.
(8)
Воспользовавшись формулами (7) и (8), получим
(9)
Оптимальная ширина доменов D0б для открытой структуры, полученная из условия dWб/dD=0,
(10)
Энергия равновесной «открытой» структуры равна
(11)
или, в зависимости от равновесной ширины доменов D0б,
Из сравнения величины энергии для обоих типов доменной структуры (ср. формулы (5) и (11)) следует важный вывод о том, что в пластинках из материала с относительно высокой магнитной анизотропией {K>3,4·10-7JS2) многодоменное размагниченное состояние с «открытой» структурой энергетически предпочтительнее, чем «замкнутая» структура.
Если ферромагнитное тело находится в исходном многодоменном размагниченном состоянии, то при включении магнитного поля Н происходит намагничивание тела, т. е. появляется результирующий магнитный момент в направлении поля. Техническое намагничивание осуществляется с помощью двух основных процессов:
1) смещения доменных границ, вызывающего увеличение объема выгодно намагниченных доменов (в которых угол между Js и Н острый);
2) вращения вектора Jsв каждом из доменов в сторону вектора поля Н.
В данной лабораторной работе производится визуальное наблюдение процессов квазистатического намагничивания монокристаллических образцов со сквозной микрополосовой доменной структурой. Начиная с некоторого критического значения напряженности (Нст) магнитного поля можно обнаружить значительную перестройку доменов, которая осуществляется путем необратимых смещений доменных границ. При этом видно, что площадь одних доменов (например, светлых) увеличивается за счет уменьшения площади других темных. По мере приближения к насыщению площадь невыгодно намагниченных доменов резко сокращается, остаются лишь отдельные узкие домены, которые исчезают в поле насыщения Hs, когда образец становится однородно намагниченным по полю. Процесс намагничивания завершен.
Рассмотрим процесс перемагничивания образца, первоначально находящегося в насыщенном состоянии. Когда поле, приложенное вдоль ОЛН, уменьшается, то при некотором значении Нзар в образце появляются магнитные домены с обратной намагниченностью (зародыши). Это поле Нзар называется полем зародышеобразования. Причиной появления зародышей служит сильное размагничивающее поле, направленное против намагниченности образца.
При дальнейшем уменьшении напряженности поля до нуля в результате роста числа и объема зародышей намагниченность образца уменьшается, но остается некоторая остаточная намагниченность Jr. Необратимое смещение границ происходит еще в положительных полях. При отрицательном поле -Нс площади темных и светлых доменов становятся одинаковыми (J=0). Коэрцитивная сила Нс очень близка к значению поля старта границ, Нст... Процесс перемагничивания завершается в отрицательном поле —Hs, когда исчезнут все невыгодно намагниченные домены.
Экспериментальная установка
Принципиальная схема экспериментальной установки для наблюдения
доменной структуры изображена на рис. 2а. Свет от лампы 1 с помощью
оптической системы 2 преобразуется в параллельный пучок, и после прохождения через поляризатор 3, исследуемый образец 4, объектив 6 и анализатор 7, попадает в окуляр микроскопа 8. Для создания внешнего магнитного поля используются катушки Гельмгольца 5, питание которых осуществляется по схеме (рис. 2б)
Проведение эксперимента.
Задание 1 Исследование доменной структуры ферромагнитной пленки
1. Собрать схему по рис. 2б.
2. Включить источник света. При этом в наблюдательном окуляре должна быть видна доменная структура образца. Если она недостаточно отчетлива, то необходимо сфокусировать изображение и, поворачивая образец, добиться контрастного изображения доменной структуры.
3. Размагнитить образец путем подачи в катушку переменного тока для получения равновесной доменной структуры. Установить в намагничивающей катушке достаточно большой ток .(I=0,4 А) и снизить его до нуля.
4. Зарисовать полученную доменную структуру и измерить равновесную ширину доменов Do, пользуясь шкалой окуляра.
D=CN,
С- цена деления шкалы окуляра, N- число делений
5. Включить источник питания постоянного тока. Плавно увеличивая ток в катушках Гельмгольца с помощью реостата, наблюдать изменение доменной структуры образца.
6. Определить ток, при котором доменная структура исчезает, и рассчитать напряженность магнитного поля по формуле:
Н= СI,
где С — постоянная катушки.
7. Уменьшая ток, зафиксировать поле Нзар, при котором возникают домены с противоположной намагниченностью. Уменьшить ток до нуля и наблюдать доменную структуру в остаточном состоянии.
... , хотя ему уже придавали иной смысл, нежели тот, который вкладывал в него Кулон.Введение понятия потенциалав электростатику Открытие закона Кулона было очень важным шагом в развитии учения об электричестве и магнетизме. Это был первый физический закон, выражающий количественные соотношения между физическими величинами в учении об электричестве и магнетизме. С помощью этого закона можно было ...
... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...
... в магнитном поле компасной стрелки в нем появляются токи, которые создают свое магнитное поле. Взаимодействие двух магнитных полей и дает «магнетизм вращения». «Теперь, – записал в своей рабочей тетради Фарадей, – когда мы знаем о существовании этих токов, явления, открытые Араго, можно объяснить, не приписывая их тому, что в меди образуется полюс, противоположный приближающемуся». Диск и магнит ...
... термин «электрический ток», понятие о направлении электрического тока и за полтора века предсказал возникновение науки об общих закономерностях процесса управления, связи и организованных системах – кибернетики. Ньютон электричества Звездный час в жизни Ампера наступил в сентябре 1820 г., когда он впервые узнал об открытии датским физиком Г. Х. Эрстедом (1819) действия электрического тока на ...
0 комментариев