9.3 Обследование проектной и фактически существующей схемы теплосети АПК ТЭЦ-2. Анализ существующего водно-химического режима оборудования
Выбор проектной схемы подготовки подпиточной воды для открытой системы теплоснабжения ТЭЦ-2 был сделан с учетом качества исходной воды, характеристик установленного теплофикационного оборудования и параметров работы. Особенностью работы АТЭЦ-2 является использование однотрубной системы теплоснабжения, выполняющей функции подпиточной линии системы теплоснабжения г. Алматы. В большинстве случаев величина подпитки, то есть производительность системы подготовки подпиточной воды составляет незначительный объем от общего объема теплосети. При незначительном превышении концентраций основных накипеобразующих компонентов в подпиточной воде над концентрацией этих же компонентов в сетевой воде, этот фактор не окажет существенного влияния на качество сетевой воды, вследствие существенного разбавления. При работе по однотрубной системе, когда транзитная линия выполняет функции подпиточной линии тепловых сетей, превышение нормируемых показателей оказывает существенное влияние на интенсивность накипеобразования, поэтому при работе по однотрубной системе необходима организация водно-химического режима полностью исключающего процессы накипеобразования.
До перехода на комплексонный водно-химический режим подготовка подпиточной воды осуществлялось по схеме Na-катионирования с подкислением. Причем в летний период осуществлялось только подкисление. Для подкисления до необходимой остаточной щелочности использовалась серная кислота. С появлением ингибитора отложений минеральных солей (ИОМС) был введен комплексонный водно-химический режим тепловых сетей. Данная технология позволила существенно снизить эксплуатационные затраты и значительно упростить схему подготовки сетевой воды. Однако применение ИОМСа не позволило работать в безнакипном режиме при температурах свыше ~110-120 0С поскольку ингибирующие способности ИОМСа ограниченны как по качеству исходной воды, так и по предельной температуре не воды, а стенки теплообменного аппарата. В связи с этим было принято решение о переходе на комбинированный режим: ввод ИОМСа при предварительном подкислении исходной воды серной кислотой. Данная схема обработки подпиточной воды применяется и в настоящее время. Дозирование ИОМСа производится насосом-дозатором, а кислоты эжекторами.
После изменения в 2000 г. последовательности ввода ИОМСа и серной кислоты, с учетом необходимого расстояния для равномерного распределения концентрационного поля, температура подогрева сетевой воды была повышена до 125 0С при температуре стенки не выше 140 0С. Показатели водно-химического режима составляли: остаточная щелочность Що = 0,7 мг-экв/л, ИОМС = 0,8 ± 0,1 мг/л. Повышение температуры подогрева сетевой воды при исключении накипеобразования возможно за счет изменения состава антинакипина Базовой частью композиции должен быть ИОМС, а составляющей – бесфосфорный реагент, обладающий не меньшими ингибирующими свойствами, чем ИОМС. Это позволит исключить образование фосфатных отложений даже при повышении температуры сетевой воды и концентрации фосфатов в исходном ИОМСе.
Для определения предельных технологических параметров работы оборудования и выбора композиции была спроектирована экспериментальная установка и проведены натурные эксперименты по выбору композиции, величины подкисления, дозы композиции и оптимального водно-химического режима.
9.4 Экспериментальные испытания по выбору оптимального водно-химического режима
В качестве бесфосфорного реагента в составе композиции предлагается использование СК-110, имеющий санитарно-эпидемиологическое разрешение на применение в тепловых сетях города, технологический регламент на технологию применения реагентов в системах теплоснабжения и горячего водоснабжения и технические условия применения.
Реагент СК-110 предназначен для коррекционной обработки воды в системах теплоснабжения и горячего водоснабжения с целью предупреждения образования накипи на поверхностях нагрева в водогрейных котлах и бойлерах, а также для снижения загрязненности внутренних поверхностей стенок трубопроводов и оборудования в системах теплоснабжения и горячего водоснабжения.
ИОМС (ингибитор отложений минеральных солей) содержит до 90% нитрилотриметилфосфоновой кислоты и около 10% фосфолированных полиаминов. Обработка воды ИОМСом практически не увеличивает ее минерализации, не усиливает ее коррозионно-агрессивные свойства, не оказывает влияния на биологические обрастания или насосные отложения. Механизм стабилизирующего действия заключается в адсорбции комплексона на микро-зародышах кристаллизирующейся соли, что препятствует дальнейшему росту кристаллов и образованию отложений и обеспечивает стабильность пересыщенных растворов.
9.5 Конструктивный и тепловой расчет экспериментальной установки для нагрева воды с 15 до 150 0С
Конструктивный и тепловой расчет пилотной установки производится последовательно для первой, а затем второй ступени теплообменника. Задача расчета состоит в определении при номинальном режиме и заданной тепловой производительности геометрических размеров теплообменника.
Исходными данными являются:
скорость протекания воды W=1,5 м/с;
температура исходной воды t ж1`=15 0С;
температура воды на выходе из первой ступени теплообменника tж1`=1200С;
параметры греющего пара Р=0,981 МПа, t=250 0С;
внутренняя трубка теплообменника d=14/12мм, материал медь, латунь;
коэффициент теплопроводности l=130 Вт/м0С;
теплоемкость воды Ср1=4,187 кДж/кг0С;
расход нагреваемой воды G1=0,61м3/ч;
Расчет первой ступени теплообменника
1. Количество передаваемой теплоты:
Q= G1* Ср1(t ж1``-t ж1`) = (120-15)*4,187*610/3600 = 74,4 кВт;
2. Расход пара, при Р=0,981 мПа ts=2500С; i``=2942 кДж/кг; i`= 760кДж/кг;
G2= Q/0,98 (i``- i`) = 74,4*103/0,98 (2942 - 760) = 0,0348 кг/с;
3. Для расчета коэффициента теплоотдачи к внешней поверхности трубки при конденсации пара необходимо знать температуру внешней поверхности tс2 и высоту трубки Н. Так как значения этих величин неизвестны, то расчет производим методом последовательных приближений. Определяем средне логарифмический температурный напор:
Dtл= (t ж1``- t ж1`) / (2,3 * lg(ts - t ж1`) / ( ts - t ж1``);
Dtл = (120 - 15) / (2,3 lg(250-15) / (250 - 120)) = 178 0С
4. Задаёмся температурой стенки наружной трубы
tс2 » ts-tл/2 = 250 - 178/2 = 160 0С
5. Задаёмся высотой трубок Н = 1,5 м
6. Приведенная длина трубки
Z = t2 Н*А; При ts=180 0С : В = 13*10-3 м/Вт; А = 150 1/м*с
Z = ( ts- tс2 )*Н*А=(250-160)*1,5*150=20250 >2300
7. Течение пленки конденсата турбулентное по всей длине трубки.
Re = (253+0,069 (Рr/Рrс)0,25*Рr0,5*(Z-2300))4/3;
Рr1
Рrс1,1
Re = (253+0,069(1/1,1)0,25*10,5(20250-2300)) 4/3=16600;
0 комментариев