3. Вибрация.
Вибрация - это низкочастотные колебания мебханизмов и машин, передаваемые телу человека через кожный покров, костную и мышечную ткань. Вибрация оказьюает резко выраженное неблагоприятное воздействие на работоспособность и физиологические функции организма, которое связано с явлением резонанса Наиболее вредное действие на организм оказывает вибрация, часто та которой совпадает с частотой резонанеов тела и органов человека (для всего тела /р = 6 ГЦ, сердца - 4 Гц, голова - 25 Гц, ЦНС - 250 Гц, другие органы - 3-8 Гц).Даже кратковременное воздействие вибрации такой частоты вызывает расстройства основных физиологических функций. Длительное воздействие вибрации вызывает физиологические изменения сосудов и вестибулярного аппарата, является причиной вибрационной болезни, ведущей к инвалидности.
Основными физическими характеристиками вибрации, наряду с частотой колебаний (Гц) /, является амплитуда (А) - величина отклонения от положения равновесия (мм), скорость вибрации (м/с) - V.
У = 2п/ А- 10 а также ускорение вибрации:
а = (2тг/)2- А- 10
Так же как и шум, вибрация имеет свой спектр, который может быть линейным (дискретным), сплошным и смешанным.
Так как диапазон изменения параметров вибрации от пороговых (безопасных) значений до действительных велик, для измерения уровня используют логарифм отношения действительных значений к пороговым, а за единицу измерения принимают дБ.
4. Санитарно-гигиеническое нормирование уровня шума и вибрации.
Цель санитарно - гигиенического нормирования уровня шума и вибрации - предотвращение функциональных расстройств и заболеваний. В основе нормирования лежат медицинские показания. Нормативы устанавливают предельно допустимую суточную и недельную норму воздействий шума и вибрации.
Для гигиенической оценки постоянного шума служит уровень звукового давления в спектре шума. Для оценки акустической обстановки, связанной с непостоянным шумом используется логарифмическая интенсивность звука, которая измеряется по стандартной шкале А шумомера. Эта шкала имитирует частотную чувствительность человеческого уха, а интенсивность при этом обозначается в дБА. Для оценки воздействия непостоянного шума используют также его эквивалентный но энергии уровень, который оказывает такое же действие, как и постоянный шум. Для оценки суточной шумовой дозы определяют энергию шума, накопленную за это время действия.
Предельно допустимый уровень шума для рабочих мест составляет 80 дБА. Недопустимо даже кратковременное пребывание в зоне с уровнем шума > 115 дБА без средств индивидуальной защиты. Запрещается нахождение людей в зоне с уровнем шума более 130 дБ А.
При вибрации колебательная энергия, поглощенная телом человека, пропорциональна площади контакта, времени воздействия и интенсивности колебаний. Для нормирования воздействия вибрации установлены гигиенические нормативы, определяющие предельные величины виброскорости и виброускорения как в линейных единицах, так и в логарифмических (дБ) в зависимости от частоты вибрации.
5. Приборы и методы измерения уровня шума и вибрации
Для измерения уровня и анализа спектра шума служат шумомеры. В шу-момерах используют конденсаторные или пьезоэлектрические микрофоны, преобразующие звуковые колебания в электрический сигнал, который затем усиливается, проходит через корректирующие фильтры и поступает на прибор-регистратор. Среди отечественных шумомеров можно указать прибор ВШВ-003, позволяющий проводить измерения в частотном диапазоне 10-20 000 Гц (уровень измеряемого звука 25-140 дБ), и прибор ШКВ-! с фильтрами ФЭ-2 (уровень измеряемого звука 30-140 дБ в частотном диапазоне 2-40 000 Гц). Вибрацию измеряют вибромирами типа НВА-1 и ШИВ-Г С помощью виброметра НВА-1 в комплексе с датчиками можно определять низкочастотную виброскорость и ускорение.
6. Способы и средства защиты от вредных воздействий производственного шума и вибрации.
Основные способы защиты от вредного воздействия шума и вибрации включают следующие возможности:
1. Устранение или уменьшение шума в источнике образования.
2. Снижение шума при его распространении
3. Применение индивидуальной защиты.
Устранение или уменьшение шума и вибрации в источнике возникновения достигают изменением технологического процесса, заменой шумного оборудования на малошумное, применением деталей из пластика, центрированием и балансировкой деталей, проведением профилактических и смазочш-.ге работ.
Снижение шума и вибрации при их распространении достигается применением звуко- и виброизоляции. Звукоизоляция представляет собой ограждающие конструкции, выполненные из звукопоглощающих материалов (акустические плиты из специальных материалов - пенопласта, поролона, губчатой резины, войлока). Эффективным способом звукоизоляции является экранирование источника шума. Акустические экраны, устанавливаемые на пути распространения звука, образуют зону акустической тени. Защита от вибрации основана на превращении энергии механических колебаний в тепловую. Это достигается использованием в конструкциях вибрирующих агрегатов демпфирующих материалов- резины, пластиков и различных мастик на основе эпоксидных смол.
Методы коллективной защиты от шума не всегда дают необходимый эффект, в этих случаях используют СИЗ - наружные и внутренние противошумы.
Наружные противошумы - это наушники или шлемы, выполненные из губчатой резины или войлока.
Внутренние противошумы - это вкладыши, вставляемые в слуховой канал - беруши (мягкие тампоны из ультратонкого волокна) и заглушки, изготовленные из эластичных полимеров и резины.
К средствам индивидуальной защиты от вибрации относятся специальные рукавицы, перчатки, виброзащитная обувь с прокладками из демпфирующих материалов. Организационные меры по предупреждению вибрационной болезни состоят в разработке и внедрении физиологически обоснованных режимов труда (отдых на 7-10 мин через 1 час работы), проведение физиотерапевтических мероприятий.
Санитарные мероприятия по борьбе с шумами включают устройство защитных противошумных зон (деревья, кустарники) между цехами, размещение шумных цехов с наветренной стороны, рациональное расположение шумных участков внутри цеха, их звукоизоляцию.
Тема 8. Вредные излучения и защита от них на производстве
1. Виды излучений, применяемые в сельскохозяйственном
производстве.
2. Ионизирующие излучения.
3 Электромагнитное радиоизлучение.
4. Инфракрасное излучение.
5. Световое излучение.
6. Ультрафиолетовое излучение.
7. Лазерное излучение.
1. Виды излучений, применяемые в сельскохозяйственном производстве.
Переход сельскохозяйственного производства на промышленную основу связан с широким применением в технологических процессах различных видов излучений и электромагнитных полей высокой и сверхвысокой частоты.
Инфракрасное излучение используется для обогрева, ультрафиолетовое излучение — для облучения животных и бактерицидной обработки помещений Электромагнитные поля возникают при использовании электротермических установок индукционного и диэлектрического нагрева, лазерное излучение -при работе оптических квантовых генераторов (лазеров). Ионизирующие излучения используются в сельском хозяйстве для борьбы с насекомыми, стерилизации пищевых продуктов, в диагностических и исследовательских целях.
Все эти излучения могут оказывать вредное воздействие на здоровье человека, поэтому необходимо нормирование и защита от их воздействия на жизненно важные органы и системы человека.
К ионизирующим излучениям относятся корпускулярные (альфа, бета -нейтроны) и коротковолновые электромагнитные излучения (гамма- и рентгеновское), способные при взаимодействии с веществом вызывать ионизацию атомов.
Все ионизирующие излучения характеризуются проникающей и ионизирующей способностью:
а - имеют наибольшую ионизирующую и наименьшую проникающую способность.
(} - имеют меньшую ионизирующую, но более высокую проникающую способность.
у - имеют наименьшую ионизирующую, но наибольшую проникающую способность.
Рентгеновское (Х-) излучение имеет ту же природу, что и у - излучение, но отличается большей длиной волны и, соответственно, меньшей ионизирующей способностью.
Воздействие ионизирующих излучений на биологические ткани ведет к разрушению межмолекулярных связей, изменению их структуры и гибели организмов. У человека наиболее уязвимыми являются органы кроветворения и железы внутренней секреции.
Для оценки радиации используется понятие активности, а также экспозиционной, поглощенной, эквивалентной и эффективной дозы.
1. Активность радиации - число распадов атомных ядер в единицу времени. Единица активности - Беккерель (Бк).
1 Беккерель (Бк) = 1 распад/с Внесистемной единицей является Кюри(Ки):
1 Ки = 3,7 ■ 10ю Бк (в 1с 3,7 • 1010 распадов).
2. Экспозиционная доза характеризует ионизирующую способность излучения в воздухе, т.е. радиационный фон.
Единицей экспозиционной дозы является кулон/кг (Кл/кг), внесистемная единица - рентген (Р). Используются производные единицы- мР и мкР. Под уровнем радиации понимается экспозиционная доза, отнесенная ко времени (Р/ч). На земной поверхности уровень радиации, образованный природным фоном находится в пределах 3-25 мкР/ч.
3. Поглощенная доза - энергия излучения, поглощенная 1 кг массы облучаемого объекта. Единица поглощенной дозы- Грей.
Бтк = Е/т = Дж/кг = 1 Грей (система СИ). В практических измерениях используется также внесистемная единица -радиан (рад).
1Гр=100рад
В связи с тем, что одинаковая поглощенная доза различных видов излучений оказывает разное биологическое действие, введено понятие эквивалентной дозы.
4. Эквивалентная доза используется для оценки радиационной опасности хронического облучения. Единица эквивалентной дозы - Зиверт. Используется также внесистемная единица - БЭР (биологический эквивалент рада).
1 Зв = 100БЭР
Эквивалентная доза определяется умножением поглощенной дозы Отк на коэффициент тяжести ^ц данного вида излучения.
НТк = Отк " ^к (Дж/кг - Зиверт) ^к колеблется от 20 (для а - излучения, потоков тяжелых ядер и осколков деления) до 10 (быстрые нейтроны и протоны) и 1 (фотоны, (3-, и рентгеновское излучения).
Облучение может быть внешним - когда источник излучения находится снаружи и внутренним - при попадании радионуклидов внутрь организма через легкие, ЖКТ и кожу.
5. Эффективная доза - полученная за определенное время поступления радионуклидов в организм. Она позволяет оценить риск отдаленных последствий облучения отдельных органов и тканей с учетом их различной радиочувствительности.
Е = I ^т • Нтт где: взвешивающий коэффициент для ткани Т,
Нтт - эквивалентная доза для ткани Т за время т Единица измерения эквивалентной дозы также Зиверт. Значения ^т колеблются от 0,2 (костный мозг) до 0,12 (легкие, желудок) и 0,05 (печень, поджелудочная железа).
Получение дозы 0,2-0,3 Зв вызывает появление в организме обратимых изменений (в частности, в формуле крови), 0,8-1,2 Зв - начальные признаки лучевой болезни (тошнота, рвота, головокружение, тахикардия), 2,7-3,0 Зв - развивается острая лучевая болезнь, 7,0 Зв и более даже при однократном облучении приводит к летальному исходу.
При работе с радиоактивными материалами следует учитывать, что биологическое действие излучения сопровождается эффектом кумуляции (накопления). Радиоактивное облучение способно вызывать в отдаленных последствиях лейкозы, злокачественные новообразования и раннее старение.
Гигиеническая регламентация ионизирующего излучения проводится в соответствии с нормами радиационной безопасности НРБ-99 (СП-2.6.1.758-99 -санитарные правила). Для персонала радиационно-опасных объектов годовая эквивалентная доза не должна превышать 20 мЗв, для населения - 1 мЗв
Основными средствами защиты от ионизирующих излучений являются стационарные и передвижные защитные экраны, контейнеры и защитные сейфы, предназначенные для хранения и транспортировки радиоактивных источников II ОТХОДОВ.
... . Заключение. Наука БЖД исследует мир опасностей, действующих в среде обитания человека, разрабатывает системы и методы защиты человека от опасностей. В современном понимании наука о БЖД изучает опасности производственной, бытовой и городской среды как в условиях повседневной жизни, так и при возникновении ЧС техногенного и природного происхождения ...
... управляемой и управляющей систем, контроль за ходом организации управления, определение эффективности мероприятия, стимулирование работы. При выборе средств управления БЖД выделяют мировоззренческий, физиологический, психологический, социальный, воспитательный, эргономический, экологический, медицинский, технический, организационно-оперативный, правовой и экономи ...
... деятельности, от эмоционального и физического состояния организма. Понимание процессов изменения работоспособности позволяет предупредить или отдалить наступление утомления. Например, у студентов первых курсов высших учебных заведений в соответствии с биологическими ритмами «пик» работоспособности приходится на 11 часов утра; фаза относительно устойчивой работоспособности наблюдается ...
... безопасности техносферы на базе мониторинга опасностей и применения наиболее эффективных мер и средств защиты; —основы формирования требований по безопасности деятельности к операторам технических систем и населению техносферы. При определении основных практических функций БЖД необходимо учитывать историческую последовательность возникновения негативных воздействий, формирования зон их действия ...
0 комментариев