3. основные светотехнические понятия и величины.
Зрительные ощущения вызываются световыми волнами длиной 380-700 нм. Более короткие волны - УФ (100-380 нм) и более длинные - ИК (свыше 700 нм) зрительных ощущений не вызывают. Основными светотехническими величинами являются:
1.Световой поток Ф - мощность лучистой энергии, оцениваемой по световому ощущению, воспринимаемому глазом. Единица светового потока - люмен (лм).
2.Сила света - световой поток, отнесенный к телесному углу со, она отражает пространственную плотность светового потока:
I = Ф/ш = лм / ср (стерадиан) Единица силы света - кандела (кд) - свеча. 1 кандела - сила света точечного источника, испускающего световой поток в 1 лм, равномерно распределенный внутри телесного угла в 1 ср. Кандела - светотехническая единица, устанавливаемая по эталону.
3 Освещенность В - плотность светового потока на освещаемой поверхности:
Е = Ф/3; где: ^'. - площадь поверхности, м
Ф - световой поток, лм. Р)диница освещенности — люкс (лк), он равен световому потоку 1 лм, равномерно распределенному на площади в 1 м2.
Освещенность не зависит от свойств освещаемой поверхности (цвета, формы). Одинаковый световой поток создает равную освещенность на темных и светлых поверхностях. Освещенность 1 лк - очень слабая, в лунную ночь освещенность поверхности земли 0,2 лк, а в солнечный день - до 100000 лк. Основное значение для зрительного восприятия имеет не освещенность поверхности, а световой поток, отраженный от этой поверхности и попадающий на зрачок, т.к. уровень ощущения света глазом зависит от плотности светового потока на сетчатке глаза. В этой связи введено понятие яркости. Именно различие в яркости предметов позволяет человеку их различать. 4. Единица измерения яркости - нит (нт)
1 нт =1 кд/м^
4 Нормирование естественного освещения.
Рабочие места на производстве могут освещаться естественным и искусственным светом. Часто прибегают к комбинированному освещению, при котором недостаточное по нормам естественное освещение дополняется искусственным.
Естественное освещение создается прямыми солнечными лучами или рассеянным светом небосвода. Естественное освещение может быть боковым (через окна), верхним (через световые фонари) и смешанным (боковое в сочетании с верхним). Боковое освещение создает дополнительную неравномерность в освещении участков, удаленных от окон и расположенных рядом с ними. Равномерное освещение помещений обеспечивается верхним и особенно совмещенным естественным освещением.
Нормирование естественного освещения осуществляется по коэффициенту естественной освещенности Ке.о., который определяется по формуле:
Ке.о. = (Ев/Ен) • 100%
где: Ев - освещенность данной точки внутри помещения.
Ен - освещенность снаружи помещения под открытым небом. Гигиенические нормы естественной освещенности установлены в зависимости от разряда зрительной работы (наименьшего размера объекта различения).
Освещенность сельскохозяйственных объектов нормируется отраслевыми нормами освещения производственных зданий и сооружений. Нормами установлено 8 разрядов для зрительных работ. В основу выбора Ке.о. для первых 7 разрядов положен размер объекта различия. Расчет естественного освещения заключается в определении площади световых проемов (окон и фонарей) в соответствии с нормируемым значением Ке.о.
5. Источники и методы расчета искусственной освещенности
Искусственное освещение используется при недостаточном естественном освещении, а также при освещении рабочих поверхностей в темное время суток. Оно может быть общим и местным.
Общее освещение предназначено для освещения всего помещения и делится на равномерное и локализованное. Равномерное освещение создает условия для выполнения работы в любом месте освещаемого пространства. Локализованное - предусматривает размещение светильников но местам расположения оборудования. Местное освещение используют для освещения только рабочих поверхностей, его выполняют стационарным и переносным
Искусственное освещение нормируют по минимальной освещенности рабочих поверхностей в зависимости от характеристики зрительной работы. Наибольшая нормируемая освещенность составляет 5000 лк (разряд 1 А), наименьшая - 30 лк. Уровни нормированной освещенности повышаются в условиях, затрудняющих зрительную работу или увеличивающих опасность травматизма.
Нормы регламентируют также показатель ослепленности Р%, который оценивает слепящее действие осветительной установки. Для светильника общего освещения в зависимости от разряда зрительных работ он лежит в пределах 20-60%, а при периодическом пребывании людей в помещении- 60-80%.
Источники искусственного освещения - лампы накаливания и газоразрядные лампы. Лампы накаливания дают непрерывный спектр излучения с преобладанием желто-красных лучей по сравнению с естественным светом. Источниками света в них является раскаленная вольфрамовая спираль. Недостаток ламп накаливания - небольшой срок службы (до 2,5 тыс.ч) и низкая световая отдача - 7-19 лм/Вт.
Газоразрядные лампы бывают низкого (люминесцентные) и высокого давления. Люминесцентная лампа - это стеклянная трубка, внутренняя поверхность которой покрыта слоем люминофора. Колба лампы наполнена небольшим количеством паров ртути (сейчас применяется Иа) - 30-80 мг, и инертным газом - обычно аргоном под давлением 400 Па. Люминесцентные лампы в зависимости от состава люминофора различаются цветностью - лампы дневного света ЛД и белого света ЛБ. Газоразрядные лампы имеют срок службы до 5тыс.ч, световую отдачу 40-65 лм/Вт, кроме того спектр их излучения ближе к естественному свету. Их недостатком является пульсация светового потока, шум дросселей, сложность системы включения, их нельзя использовать при низких температурах, они чувствительны к снижению напряжения в сети.
Тема 10. Меры безопасности при работе с токсичными и агрессивными
Веществами
1. Определение токсичности и классификация токсичных веществ.
2. Правила безопасного хранения токсичных веществ.
3. Правила безопасности при работе с токсичными и агрессивными
веществами.
4. Средства индивидуальной защиты.
1. Определение токсичности и классификация токсичных веществ
В сельскохозяйственном производстве широко используются химические вещества, которые необходимы в современных технологиях, но представляющие опасность для жизни и здоровья работающих. Для предотвращения острых и хронических отравлений необходимо знать класс опасности вещества, особенности его проникновения и действия на организм. Опасность отравления зависит также и от условий работы, методов применения и аппаратуры.
Токсический эффект может проявляться функциональными и структурными (иатоморфологическими) изменениями или вести к гибели организма. При этом для оценки порога однократного вредного действия используется ПДК максимально-разовая, а постоянного воздействга - ПДК среднесуточная. При отсутствии нормативов на некоторые химические вещества может использоваться временный санитарно-гигиенический норматив - ориентировочный безопасный уровень воздействия (ОБУВ). В случае превышения уровня воздействия токсичных веществ, в организме возникают изменения биологических показателей, выходящие за пределы приспособительных реакций.
Для оценки степени токсичности химических веществ используется норматив летальной дозы ЛД5о - концентрация мг/м"1 вещества, вызывающая гибель 50% особей вида - индикатора при 4-часовом ингаляционном пути поступления в организм.
По степени токсичности все химические вещества подразделяются на 4 класса опасности:
1. Чрезвычайно опасные (арсенид Са, тиофос, ал.дрин).
2. Высокоопасные (бромистый метил, дихлорэтан, зоокумарин, кры-сид).
3. Умеренно опасные (формалин, бутифос, карбофос, хлорофос).
4. Малоопасные (минеральные удобрения, бордосская жидкость, препараты серы).
Применяемые в сельскохозяйственном производстве пестициды в зависимости от назначения делят на:
1. Инсектициды - средства борьбы с насекомыми.
2. Зооциды - средства борьбы с грызунами.
3. Фунгициды - средства борьбы с грибкоьыми заболеваниями.
4. Гербициды - средства против сорных растений.
5. Дефолианты - средства для уничтожения лиственного покрова.
6. Агтрактанты - средства, привлекающие насекомых
7. Репелленты - средства, отпугивающие насекомых
К агрессивным веществам относятся концентрированные кислоты и щелочи, способные при попадании на кожу и вдыхании паров вызывать химические ожоги. Опасность могут представлять также сильные окислители и щелочные металлы, также способные вызывать химические ожоги.
... . Заключение. Наука БЖД исследует мир опасностей, действующих в среде обитания человека, разрабатывает системы и методы защиты человека от опасностей. В современном понимании наука о БЖД изучает опасности производственной, бытовой и городской среды как в условиях повседневной жизни, так и при возникновении ЧС техногенного и природного происхождения ...
... управляемой и управляющей систем, контроль за ходом организации управления, определение эффективности мероприятия, стимулирование работы. При выборе средств управления БЖД выделяют мировоззренческий, физиологический, психологический, социальный, воспитательный, эргономический, экологический, медицинский, технический, организационно-оперативный, правовой и экономи ...
... деятельности, от эмоционального и физического состояния организма. Понимание процессов изменения работоспособности позволяет предупредить или отдалить наступление утомления. Например, у студентов первых курсов высших учебных заведений в соответствии с биологическими ритмами «пик» работоспособности приходится на 11 часов утра; фаза относительно устойчивой работоспособности наблюдается ...
... безопасности техносферы на базе мониторинга опасностей и применения наиболее эффективных мер и средств защиты; —основы формирования требований по безопасности деятельности к операторам технических систем и населению техносферы. При определении основных практических функций БЖД необходимо учитывать историческую последовательность возникновения негативных воздействий, формирования зон их действия ...
0 комментариев