6. Охрана окружающей среды. спав и их вовлечение в метаболические процессы
Поверхностно-активные вещества (ПАВ) представляют собой разнородную по химической структуре группу соединений, которые обладают одинаковой способностью снижать поверхностное натяжение. ПАВ принято делить на ионогенные, диссоциирующие на ионы в водной среде, и недиссоциирующие – неионогенные. К ионогенным относятся анионактивные (АПАВ), которые при диссоциации образуют макроанион, обладающий поверхностной активностью, катионные (КПАВ), образующие поверхностно-активный макрокатион, и амфотерные или амфолитные, диссоциирующие как АПАВ или как КПАВ в зависимости от реакции среды. Большую угрозу загрязнения воды представляют анионные и неионогенные поверхностно-активные вещества, широко используемые в качестве компонентов моющих средств или детергентов. Наряду с моющим действием ПАВ характеризуются эмульгирующими, диспергирующими, солюбилизирующими и другими полезными свойствами, в связи с чем находят самое разнообразное применение в промышленности, сельском хозяйстве, строительстве, быту, медицине и т.д./3/.
Целевое назначение ПАВ как моющих средств обуславливает попадание почти всего объема их продукции в сточную воду, которая, в свою очередь, может загрязнять поверхностные водоемы, грунтовые воды, почву. Химические и физико-химические методы очистки стоков не решают проблемы борьбы с загрязнением воды поверхностно-активными веществами, так как при использовании этих методов ПАВ, как правило только концентрируются или разрушаются частично, но не разлагаются полностью до СО2, Н2О и других простейших продуктов. Полная деструкция детергентов осуществляется микроорганизмами, на использовании которых основаны все биологические методы очистки воды. Однако очистка стоков от ПАВ общепринятыми биологическими методами затруднена, поскольку многие из этих веществ сравнительно устойчивы к микробному разложению и проходят через очистные сооружения, не изменяясь. При этом ПАВ из-за высокой способности к пенообразованию нарушают их работу, снижая скорость оседания активного ила. Разнесение ветром пены создает эпидемиологическую опасность, так как вместе с пеной распространяются болезнетворные бактерии, в частности возбудители кишечных инфекций. Число бактерий в водоемах при пенообразовании очень возрастает из-за того, что в пене создаются чрезвычайно благоприятные трофические условия. Незначительное количество (0,2–0,4 мг/л ПАВ) придает неприятный вкус и запах питьевой воде. Образование пены на поверхности водоемов нарушает кислородный режим и вызывает массовую гибель населяющей их флоры и фауны /57/.
Таким образом, совершенно очевидна необходимость интенсификации и поиска новых эффективных биологических методов очистки сточных вод от ПАВ. Наряду с этим направлением важное значение важное значение имеет изучение биоразлагаемости рекомендуемых для практики синтетических ПАВ, целью которого является выбор наиболее легко биологически окисляемых веществ. Способность ПАВ биодеградировать зависит от их химической структуры. Строение молекулы вещества, с одной стороны предопределяет его пригодность в качестве субстрата соответствующих ферментов, а с другой – сказывается на антимикробных свойствах соединения. Известно, что анионактивные ПАВ обладают микробоцидным и микробостатическим действием. При этом показано, что вещества, характеризующиеся высокой антимикробной активностью, одновременно наиболее стойки к микробному разложению. В связи с этим вполне вероятно, что первым этапом взаимодействия микроорганизмов с ПАВ является приобретение им резистентности к данному веществу. Именно среди резистентных особей в дальнейшем селекционируются клетки, способные разрушать ПАВ, используя их в качестве источника питания /58/.
Биодеградацию ПАВ определяют как в природной, так и в сточной воде. Наблюдаемая при этом вариабельность результатов обусловлена следующими факторами: 1) разными происхождение образцов воды и ила, а также временем адаптации ила к изучаемому веществу; 2) температурой, при которой проводится опыт; 3) концентрацией испытуемого соединения; 4) временем инкубации; 5) природой дополнительного органического материала в образце воды; 6) различным составом технических препаратов исследуемых ПАВ. Биодеградация должна пройти настолько глубоко, чтобы образовались продукты, приемлемые для окружающей среды. Изучают как первичную, так и полную деградацию ПАВ. Под первичной подразумевают потерю веществом поверхностной активности, которую определяют, измеряя специфическими методами поверхностное натяжение или устанавливая концентрацию веществ, способных соединяться с метиленовой синью – для АПАВ, и веществ, способных соединяться с висмутом – для НПАВ. О частичном разложении ПАВ до безвредных продуктов судят по поведению живых организмов (дафний, рыб) в исследуемой очищенной воде. Полное разложение поверхностно-активных соединений до неорганических веществ оценивают неспецифическими методами, определяя БПК, ХПК, общий органический углерод, выделение СО2. Некоторые авторы предлагают судить о разрушении ПАВ по интенсивности роста бактерий-деструкторов на средах с этими веществами /59/.
В зависимости от способности к биодеградации моющие средства моющие средства, по предложению Богена и Сойер /60/, делят на «мягкие» и «жесткие». «Мягкие» детергенты сравнительно легко разрушаются микроорганизмами. К этой группе относятся вещества, которые на 85% удаляются активным илом в аэротенке, разлагаясь при этом до СО2 и Н2О. «Жесткие» удаляются лишь на 40–45%. Остальные вещества составляют промежуточную группу.
В практике в настоящее время наиболее широко применяются анионные ПАВ, а именно: алкилсульфаты общей формулы R-OSO3Na, алкилсульфонаты-R-SO3Na, и алкилбензолсульфонаты, где R – неразветвленная (линейная) или разветвленная углеводородная цепь, чаще всего из 10–18 углеродных атомов. Первые исследования разлагаемости анионных ПАВ микроорганизмами проводились с активным илом и речной водой. В этих опытах показано, что скорость биодеградации АПАВ зависит прежде всего от строения алкильной цепи. Вещества с неразветвленной (линейной) цепью сравнительно легко разрушаются микроорганизмами активного ила. Разветвления в цепи задерживают разложение ПАВ. Медленно разлагаются, например тетрапропиленбензолсульфонат, в прошлом широко используемый в промышленности и в быту. Биодеградация осуществляется легче при большей длине алкильной цепи, а сульфонатов – при большем расстоянии между концом цепи и гидрофильной группой. Однако с увеличением длины алкильной цепи свыше С14-С18 активность деструкции падает, что объясняется снижением растворимости. Для алкилбензолсульфонатов (АБС) установлено, что одиночная боковая метильная группа на ближнем или отдаленном конце цепи только незначительно замедляет процесс биодеградации. Наличие терминальной четвертичной группы не имеет большого значения, если есть открытый конец цепи. Если же такого открытого конца нет, то наблюдается заметное торможение процесса. Деградация происходит, но не обычным метаболическим путем, и облегчается при увеличении длины цепи.
Большой интерес представляют исследования разложения ПАВ чистыми культурами микроорганизмов. Так, Ризен /61/ показал, что Ps. aeruginosa, Serratia marcenses, Escherichia coli, Aerobacter aerogenses при выращивании на синтетической среде могут использовать различные анионные ПАВ в качестве единственного источника углерода. Обнаружено, что на скорость биоразложения влияет минеральный состав питательной среды. Из почвы, сточных вод и активного ила были выделены бактерии, способные расти на среде с АБС в качестве единственного источника углерода: Alcaligenes faecalis (7 культур), A. viscosus (2), A. bookeri (1), Pseudomonas sp. (11), Flavobacterium suaveolans (1), Escherichia coli (1). 15 штаммов из 34 прекрасно росли на АБС. Для 7 культур не была токсичной даже такая высокая концентрация вещества, как 1000 мг/л.
Также были выполнены интересные работы. Из почвы, взятой в районе очистного сооружения, методом накопления были выделены два штамма Pseudomonas – С12 и С12В. Первый штамм разрушал только додецилсульфат (ДДС), второй еще и додецилбензолсульфонат. Необходимо отметить, что представители рода Pseudomonas особенно часто выделяются из культур накопления на средах с анионными ПАВ. Так, на селективной среде с АБС из активного ила были изолированы 16 штаммов. Все выделенные культуры разрушают линейны алкилбензолсульфонат.
Были выделены из сточной воды и изучены активность деструкции лаурилсульфоната и тетрапропилбензолсульфоната у 40 штаммов бактерий, отнесенных к разным родам. Большинство культур довольно быстро разрушало лаурилсульфонат. Тетрапропилбензолсульфонат оказался более стойким к биодеградации. Разложение этого соединения вызывали Bact. imperiale и смесь Corynebacterium annamensis и Flavobact. diffusum. Как свидетельствуют опыты, в метаболизме АБС принимают участие и представители рода Bacillus. Bacillus sp., изолированный из хозяйственно-бытовых стоков на солевой среде с 0,05% ундецилбензол-n-сульфоната, рос на всех гомологах этого соединения с длиной алкильного радикала от С1 до С18, на бензолсульфонате, n-оксибензоате, 3,4 – диоксибензоате. Из различных субстратов (речная и морская вода, бытовые стоки, сточные воды предприятий по производству анионных ПАВ, активные илы городских и заводских очистных установок, почва, песок, ризосфера растений, настой сена) на синтетических средах, содержащих алкилсульфаты (АС) в качестве единственного источника углерода и энергии, изолированы бактерии, активно разлагающие эти соединения.
Для выделения микроорганизмов были использованы метод накопительных культур и разработанный метод обнаружения микробов-деструкторов /62/. Этот метод заключается в посеве исследуемого материала на агаризованную синтетическую среду определенного солевого состава, содержащую 0,7–1,0 г/л ДДС. В такой среде додецилсульфат образует в толще агара кристаллы. Метод основан на способности микробов, разрушающих АС, образовывать вокруг колоний прозрачные зоны в результате использования вещества клетками. Величина зон тем больше, чем выше деструктивная активность штамма. С помощью указанных методов было выделено свыше 100 бактериальных культур, способных метаболизировать ДДС в солевой среде. Детально изучены 42 штамма. Бактерии идентифицированы по определителю Берги на основании 36 признаков. Преобладающее большинство выделенных культур (33 штамма) отнесены к роду Pseudomonas. Среди флюоресцирующих псевдомонад, выделенных из почв, ризосферы и сточных вод, идентифицированы различные биотипы Ps. forescens, Ps. putida, Ps. arantiaca, Ps. aeruginosa. Все выделенные штаммы активно разлагают ДДС, а часть из них – и технические препараты АС, содержащие смесь гомологов с различной длиной углеводородной цепи (табл.). Технические препараты алкилсульфонатов и алкилбензолсульфонатов данными бактериями не разрушались. Попытки изолировать споровые дрожжи оказались безуспешными.
Исследовали способность разрушать алкилсульфаты также у зеленых водорослей рода Chlorella. О роли водорослей в биоразложении ПАВ данных в литературе мало. В то же время вопрос взаимодействия водорослей и ПАВ чрезвычайно важен, поскольку водоросли в большом количестве развиваются в биофильтрах и окислительных прудах, которые используются для биологической очистки сточных вод. Кроме того, значительный интерес представляет изучение водорослей в процессах самоочищения водоемов от ПАВ. В работе Девиса и Глойне /63/ сделана попытка изучить деструктивную способность водорослей и показано, что все взятые в опыт водорослевые культуры слабо разлагают некоторые анионактивные и неионогенные ПАВ. Однако отсутствие контроля бактериального загрязнения ставит под сомнение полученные авторами результаты.
В опытах /64/ исследовались три бактериально чистые культуры зеленых водорослей рода Chlorella: Chl. Vulgaris, штаммы 62 и М, и Chl. pyrenoidosa. Chl. vulgaris M выделена из сточных вод Магнитогорского металлургического комбината, две другие культуры получены в отделе регуляторных механизмов клетки Института молекулярной биологии и генетики АН УССР. Культуры Chl. vulgaris 62 и Chl. vulgaris M выращивали в люминостате при температуре 22–240 и освещенности 3000 лк на модифицированной жидкой и агаризованной среде Тамия. Адаптированный к гетеротрофному способу питания штамм Chl. pyrenoidosa выращивали в темноте в термостате при температуре 26–280 на жидкой и агаризованной среде ФДГА. При изучении влияния ДДС на водоросли к агаризованным средам Тамия и ФДГА добавляли от 1 до 200 мг/л соединения. Через 5–6 суток отмечали наличие или отсутствие роста водорослевых культур. Способность водорослей разрушать ДДС изучали на аналогичных жидких средах с ПАВ. О влиянии ДДС на водоросли в жидких средах судили по приросту биомассы, подсчитывая общее число клеток хлореллы в камере Горяева, и по соотношению живых и мертвых клеток. С целью выявления возможного бактериального загрязнения водорослей культуральную жидкость при каждом отборе проб высевали на МПА и агаризованные среды Тамия и ФДГА с ДДС. При выращивании водорослевых культур на агаризованных средах 1–50 мг/л вещества не оказывают неблагоприятного влияния на их рост. В присутствии 100 мг/л ПАВ отмечено угнетение роста, особенно у автотрофных штаммов. При выращивании на соответствующей жидкой среде с 50 мг/л ДДС автотрофные штаммы Chl. vulgaris 62 и Chl. vulgaris M дают значительно меньший прирост биомассы и более высокий процент мертвых клеток по сравнению с контролем без ПАВ. Концентрация ДДС в культуральной среде этих водорослей не изменяется. В отличие от двух других штаммов Chl. pyrenoidosa дает практически одинаковый прирост биомассы в контроле и опытном варианте, где вместо глюкозы в среду вносили 50 мг/л ПАВ. При этом в среде с ДДС существенно повышается число мертвых клеток. В то же время добавление к полноценной среде ФДГА додецилсульфата натрия в концентрациях 50 и 100 мг/л несколько стимулирует рост культуры Chl. pyrenoidosa. Количество мертвых клеток также превышает их число в контроле, однако их меньше, чем на среде с ПАВ без глюкозы. Во всех опытных вариантах отмечено снижение концентрации ДДС. Убыль большей части ДДС в культуральной жидкости Chl. pyrenoidosa происходит за 8 суток. После этого в среде еще определяются остаточные количества вещества, которое не разрушается при дальнейшем культивировании водорослей. Полное исчезновение ПАВ наблюдается лишь в одном случае – при наличии в среде 50 мг/л вещества и глюкозы. Контроль загрязнения показал, что на протяжении всех опытов культуры водорослей были бактериально чистыми. Таким образом, полученные данные позволяют сделать вывод о том, что некоторые штаммы водорослей Chlorella способны разрушать алкилсульфаты. Активность водорослей значительно ниже активности бактерий. Однако деструкция алкилсульфатов водорослями, по-видимому, может играть определенную роль в водоемах, загрязненных ПАВ.
В последние годы много внимания уделяется изучению путей микробного метаболизма анионных ПАВ, а также выделению и исследованию ферментов, ответственных за их разрушение. Показано /65/, что углеводородные радикалы алкилсульфатов, алкилсульфонатов и алкилбензолсульфонатов окисляются в тех же биохимических реакциях, что и углеводороды, жирные кислоты и спирты. Пути микробной деструкции алкилбензолсульфонатов включают также реакции расщепления бензольного кольца.
АБС более устойчивы к разложению и, поскольку они количественно преобладают в общем объеме продукции ПАВ, их метаболизм изучен детальнее. Основными биохимическими реакциями, ведущими к разрыву связей С-С, в результате чего разрушается молекула АБС, являются w-окисление, т.е. окисление терминальной метильной группы в алкильной цепи, a-окисление, b-окисление и деструкция бензольного кольца при помощи механизмов орто- или мета-расщепления. w-Окисление алкильного радикала происходит аналогично разложению прямоцепочечных углеводородов через образование спирта и альдегида до карбоксикислоты:
– СН2-СН3 ® – СН2-СН2ОН ® – СН2-СНО ® – СН2-СООН.
При a-окислении алкильная цепь прогрессивно укорачивается на один атом углерода, который выделяется в виде СО2. b-Окисление ведет к последовательному уменьшению алкильной цепи на два атома углерода сразу.
Хейман и Молоф исследовали способность выделенной Пейном с сотрудниками /66/ культуры Pseudomonas С 12В метабилизировать линейные первичные и вторичные алкилбензолсульфонаты с различной длиной улеводородной цепи. Культура разрушала АБС с короткими 1- и 2-углеродными алкильными цепями. АБС с длинной (С3-С12) цепью начинали разлагаться только после предварительной инкубации бактерий со спиртами, альдегидами или кислотами, как с соответствующим числом атомов углерода, так и с более длинной цепью. Авторы предполагают, что для разложения АБС с длинной алкильной цепью необходима предварительная индукция соответствующих ферментов соединениями, близкими по структуре к изучаемым АБС, но не содержащими кольца. Бактериальная деструкция АБС происходит в результате ряда биохимических реакций: w-окисления, b-окисления, вторичного w-окисления, a-окисления, неполного b-окисления и декарбоксилирования, которые приводят к образованию бензойной или фенилуксусной кислоты. Причем АБС с нечетным числом углеродных атомов в алкильной цепи метаболизируется через бензойную, а с четным – через фенилуксусную кислоту. Вещества с четным числом атомов углерода индуцируют путь бензойной кислоты, с нечетным – оба пути. Дальнейшее разрушение бензойной и фенилуксусной кислот происходит с разрывом кольца.
Неионогенные ПАВ еще более разнообразны по своей химической структуре, чем анионные. Они представляют собой продукты присоединения окиси этилена к веществам, содержащим активный водород, например, к алкилфенолам, жирным спиртам, меркаптанам и др. Практически любое соединение, молекула которого наряду с гидрофобным радикалом содержит карбоксильную, гидроксильную, амидную или аминную группу с подвижным атомом водорода, может реагировать с окисью этилена, образуя неионогенное ПАВ. Гидрофильную группу в молекуле НПАВ могут образовывать, помимо окиси этилена, и другие соединения. Так, довольно широко применяются НПАВ – сложные эфиры маннита и сорбита, которые называют соответственно маннитаны и сорбитаны или спаны. Оксиэтилированные эфиры сорбита и маннита нашли распространение под названием «твины». Хорошо известны НПАВ, в состав которых, наряду с окисью этилена, входят остатки окиси пропилена – так называемые блок-сополимеры. Разнообразие химического строения НПАВ создает трудности при анализе этих веществ и приводит к получению весьма противоречивых результатов при изучении биоразлагаемости /67/.
Сведения о биодеградации НПАВ получены в основном в опытах с комплексными биоценозами – водными микроорганизмами, активным илом, биопленками. Так, Каплин и соавторы /68/ изучали скорость распада в природной воде оксиэтилированных синтетических жирных спиртов, алкилфенолов, блок-сополимера окисей этилена и пропилена в концентрациях 1–10 мг/л. Оксиэтилированные жирные спирты в водоемах распадаются быстро, медленнее распадается блок-сополимер и еще медленнее – оксиэтилированные алкилфенолы. Скорость распада изучаемых веществ зависит от их исходной концентрации и количества оксиэтильных групп. Оксиэтилированный алкилфенол с десятью оксиэтильными группами в концентрации 1 мг/л разрушается полностью на 49-е сутки, а при концентрации 10 мг/л на 174-е сутки остается еще 37% неразрушенного вещества. Оксиэтилированный алкилфенол (семь оксиэтильных групп) в концентрации 1 мг/л деградирует на 139-е сутки, к тому же времени распад 10 мг/л происходит на 72%.
В работах Трифоновой Т.В. с сотрудниками /69/ приводятся данные о биоразложении продуктов присоединения смеси окиси этилена и окиси пропилена к первичным жирным спиртам. Исследователи изучали продукт оксиалкилирования синтетических первичных спиртов фракции С10-С13 (около 10% спиртов изостроения), содержащий в среднем 8 оксиалкиленовых групп, а также продукт оксиалкилирования н-додецилового спирта, содержащий в среднем 10 оксиалкиленовых групп. Разрушение с помощью активного ила происходит на 92–99%. Степень удаления НПАВ из сточных вод зависит от степени адаптации активного ила. Так, вещество почти полностью разлагается адаптированным активным илом за 6 ч, в то время как неадаптированный активный ил за это же время удаляет из стока лишь 43% НПАВ.
Таким образом, можно заключить, что скорость окисления НПАВ зависит от их химического строения, т.е. от длины и степени разветвленности алкильной цепи и от длины полиэтиленгликолевой цепи. Наиболее полно и быстро разрушаются соединения, полученные на основе нормальных первичных и вторичных спиртов, алкильная цепь которых содержит более 7 атомов углерода, а полиоксиэтиленовая – не более 10–12 молей окиси этилена. Недостаточно полно окисляются прямоцепочечные алкилфенолы, так как на скорость деструкции влияет ароматическое кольцо. Наиболее устойчивыми к биоразрушению являются оксиэтилированные алкилфенолы, с количеством оксиэтильных групп более 10. Положение фенольного кольца в прямой алкильной цепи оказывает большое влияние на скорость деградации. Деструкция неионогенных поверхностно-активных веществ происходит в два этапа: 1) карбоксилирование конечной метильной группы с последующим b-окислением и 2) гидролиз полиэтиленгликолевой цепи. При этом образуются следующие типы молекул: 1) с неповрежденной гидрофобной и деградированной полиэтиленгликолевой цепями; 2) с карбоксилированной гидрофобной и ненарушенной полиоксиэтиленовой цепями; 3) с карбоксилированной гидрофобной и деградированной полиоксиэтиленовой цепями.
При разрушении гидрофильной цепи образуются этиленгликоли, которые в свою очередь разлагаются микроорганизмами до углекислоты и воды. Этиленгликоль может разлагаться уксусными бактериями Gluconobacter melanogenus, Acetobacter ascedens, A. аceti, A. рasteurianum, использующими его в качестве источника углерода. При окислении гликолей уксусными бактериями образуется гликолевый альдегид, а затем гликолевая кислота /70/.
Таким образом, накопившееся в последние годы данные о биоразлагаемости ПАВ свидетельствуют о необходимости, с одной стороны, синтеза и внедрения в производство легко биоразрушаемых соединений, а с другой – разработки новых интенсивных методов очистки вода от ПАВ. Эти методы должны основываться на использовании специально полученных высокоактивных чистых культур микроорганизмов, деструкторов ПАВ. Применение таких культур в микробном методе очистки будет способствовать защите водоемов от загрязнения синтетическими соединениями и сохранению окружающей человека природы.
Заключение
В работе проведен анализ литературных источников по теме: «Механизм воздействия прокариотических микроорганизмов на СПАВ и липазу». Показана способность микроорганизмов расщеплять синтетические поверхностно-активные вещества, которые, в свою очередь взаимодействуют с различными компонентами клеточных стенок бактерий, включая муреиновый слой, белки, липиды, липопротеины, липополисахариды. Изучена возможность микроорганизмов продуцировать внеклеточные ферменты (липазы).
В работе исследовались синтетические поверхностно-активные вещества и культуры микроорганизмов, возможность проведения с их помощью процесса обезжиривания меховой овчины.
Выделено 6 микробных культур из сточных вод после эмульсионного процесса обезжиривания. Изучены и описаны их морфологические особенности, физиологические и культуральные свойства. Проведена селективная адаптация выделенных микробных продуцентов на средах, содержащих оливковое масло, шерстный жир и СПАВ.
На основе результатов исследования липолитической и протеолитической активностей были отобраны культуры рода Listeria sp 3, Listeria sp 7, Listeria sp I'.
Разработана принципиальная технологическая схема получения концентрированного ферментного препарата, основанная на применении культур 3, 7, I' с использованием синтетической среды, включающей минеральные соли, шерстный жир и синтетические поверхностно-активные вещества. Данный метод культивирования позволяет получать микроорганизмы с заданными свойствами, способными деструктировать жировые вещества и СПАВ.
Разработана технология, основанная на совмещении микробиологического и эмульсионного обезжиривания меховой овчины, она исключает использование карбоната натрия и формальдегида, а также уменьшает расход СПАВ в 16 раз, что позволяет снизить уровень токсического загрязнения сточных вод.
Список использованных источников
1. Асонов Н.Р. Микробиология.-М.: Агропромиздат, 1982. – 351 с.
2. Шульговская Е.М., Иванова И.И. Состав клеток Pseudomonas при разных условиях культивирования // Микробиология, 1975, т. 44, №6. – С. 1022–1024.
3. Ребиндер П.А. Поверхностно-активные вещества. – М.: Знание, 1961. – 45 с.
4. Ксандопуло Г.Б., Рубан Е.Л. Биологическое действие ПАВ на микроорганизмы // Микробиологическая промышленность. – 1971, N6. – С. 60–66.
5. Елисеев С.А. и др. О механизме действия поверхностно-активных веществ на бактериальные клетки/ Елисеев С.А., Снежко И.А., Шульга А.Н./ МГУ. Биол. Фак. – М, 1984. – С. 4–7.
6. Турковская О.В. Микробиологическая деструкция НПАВ. Дис. Канд. биол. наук. – Саратов: Мед. институт, 1989. – 173 с.
7. Гельман Н.С. Изучение структуры биологических мембран при помощи фрагментации детергентами // Успехи соврем. биологии. – 1969. – Т.69, №1. – С. 3–18.
8. Богач П.Г. и др. Структура и функции биологических мембран/ Богач П.Г., Курский М.Д., Кучеренко Н.Е. – Киев: Вища шк., 1981. – 361 с.
9. Лишко Б.И., Шевченко М.И. Мембраны и жизнь клетки. – Киев: Наук. Думка, 1987. – 104 с.
10. Сим Э. Биохимия мембран. – М.: Мир, 1985. – 109 с.
11. Удилова О.Ф., Кривец И.А. Действие додецилсульфата натрия на оптическую плотность и выживаемость Pseudomonas aeruginosa – деструктора алкилсульфатов // Микробиол. Журнал, 1982, т. 45, №1. – С. 13–15.
12. Мартинек К. И др. Мицеллярная энзимология/ Мартинек К., Левашов А.В., Клячко М.Н. // Биологические мембраны. – 1985, т. 2, N7. – С. 669–695.
13. Ставская С.С. Биологическое разрушение анионных ПАВ. – Киев: Наук. думка, 1981. – 116 с.
14. Мэдди Э., Данн М. Солюбилизация мембран // Биохимическое исследование мембран. – М.: Мир, 1979. – С. 160–173.
15. Ротмистров М.Н. и др. Разрушение алкилсульфатов бактериями/ Ротмистров М.Н., Ставская С.С., Кривец И.А. // Микробиология, 1978, т. 47, N2. – С. 338–341.
16. Wachi Y., Yanagi M. Decomposition of surface active agents by bacteria siolated from deonized water. – J. Soc. Cosmet. Chem., 1980, vol. 31, №2, pp. 67–81/
17. Хотенов Д.А. Влияние ПАВ на микроорганизмы // Водные экосистемы и организмы: Материалы научной конференции. – М, 2000. – С. 85.
18. Ставская С.С. и др. Изучение продуктов разложения додецилсульфата натрия/ Ставская С.С., Кривец И.А., Самойленко Л.С. // Прикл. биохимия и микробиология, 1979, т. 15, №5. – С. 790–792.
19. Кучер Р.В. и др. Комплексное влияние поверхностно-активных веществ на процесс микробиологического окисления углеводородов/ Кучер Р.В., Дзумедзей Н.В., Хмельницкая Д.Л. // Микробиология. – 1981, т. 50, №6. – С. 1105–1108.
20. Панченко Л.В. и др. Выделение и изучение микроорганизмов – деструкторов ПАВ/ Панченко Л.В., турковская О.В., Шуб Г.М. // Микробиология. – 1981, т. 50, N6. – С. 217–222.
21. Биология и биотехнология микроорганизмов/ Под ред. Халмурадова А.Г. – Ташкент: Фак, 1992. – 220 с.
22. Литовченко П.П. Электронно-микроскопические исследования бактерии Pseudomonas // Микробиологический журнал, 1977, т. 39, №5. – С. 639–645.
23. Geele G., Garett E. Spores VI P. Gerchardt H.L. Sadoff, Costilow R.W. Washington P.S., 1975, p. 391.
24. Мосолов В.В. Протеолитические ферменты. М., Наука, 1979. – 125 с.
25. Keay L., Wildi B.S. Biotechnol et biogen, 1985, 179 p.
26. Яковлева М.Б., Козельцев В.Л. Протеолиз коллагена некоторыми видами макромицетов и спорообразующих бактерий // Прикладная биохимия и микробиология. – 1994, т. 30, выпуск 1.-С. 121–127.
27. Kerjan P. Regulation de la sporulation microbienne. Colloq. Intern. CNRS, Paris, 1973, 96 p.
28. Чюрлис Т.К., Ужкуренас А.П. Химия протеолитических ферментов. Вильнюс, 1983. – 133 с.
29. Ерохина Л.И. Материалы Всесоюзного симпозиума по химии протеолитических ферментов. Вильнюс, 1983. – 95 с.
30. Chambliss G.H., Legault Demare L. Regulation de la sporulation microbienne. J-P. Aubert (Eds). Coloq. Intern. CNRS, Paris, 1983. – 227 p.
31. Цаплина И.А. Синтез протеазы термофильной бактерией Bacillus subtilis. Канд. дис. М., 1982.
32. Pazlarova J. Produkce amilazy v jednorazove a kontinnalni kultivaci Bacillus subtilis. Dissert. Praque, 1982.
33. Микельсаар П.Ч. и др. Зависимость синтеза внеклеточных протеаз от фазы роста у Pseudomonas fluorescens/ Микельсаар П.Ч., Вили Р.О., Лахт Т.И. // Микробиология, 1982, т. 51, №2. – С. 212–215.
34. Биосинтез микроорганизмами нуклеаз и протеаз. – М.: Наука, 1990. – 275 с.
35. Fencl J., Novak M. Prediction of the product formation in continuous cultivation of microorganisms. Dept. Techn. Microbiol. Inst. Microbiol. Czechosl. Acad. Sci., Prague, 1981.
36. Дачюлите Я.А. Химия протеолитических ферментов. Рига, 1983. – 138 с.
37. Мудерризаде А. и др. Очистка и характеристика щелочной протеиназы алкалофильного штамма Bacillus sp./ Мудерризаде А., Инсари Н.Я., Агюложу С. // Прикладная биохимия и микробиология, т. 37, №6. – С. 674–677.
38. Мотина Л.И. и др. Способ получения щелочной протеиназы/ Мотина Л.И., Нахапетян Л.А., Скворцов Г.Е./ Пат. №4460547/ 31–13. Опубл. 14.07.88.
39. Зефирова О.Н., Мамаева А.В., Чупов В.В. Получение и свойства препаратов щелочной протеазы // Прикладная биохимия и микробиология, т. 32, №5. – С. 510–513.
40. Recombinate microbial lipases for biotechnological applications/ Schmidt – Dannert Claudia // Bioorg. and Med. Chem. – 1999, №10. P. 2123–2130.
41. Давранов К. Микробные липазы в биотехнологии // Прикладная биохимия и микробиология, 1994, т. 30, №4–5. – С. 527–534.
42. Рубан Е.Л. Микробные липиды и липазы. М.: Наука, 1977. – 216 с.
43. Давранов К.Д. и др. Специфичность липаз мицелиальных грибов к типу сложноэфирных связей триглицеридов/ Давранов К.Д., Халамейзер В.В., Розмухамедова Б.Х. // Прикладная биохимия и микробиология, т. 32, №3, 1996. – С. 294–297.
44. Дженсон Р., Брокерхоф Х. Липолитические ферменты. М.: Мир, 1978. – 396 с.
45. Шеланова С.А., Жеребцов Н.А. Оптимизация условий биосинтеза липазы. Ферментная и спиртовая промышленность, 1984. – С. 24–28.
46. Свириденко Ю.Я., Уманский М.С. Питательная среда для культивирования липолитических ферментов. А.С. №745945, 1980. БИ №25.
47. Вецозола А.О., Бекер М.Е. Оптимизация состава Среды для биосинтеза липазы дрожжами Candida Paralipolytica. Рига, 1988. – 200 с.
48. Звягинцева И.С. Липазная активность некоторых дрожжей. – Микробиология, 1982, т. 41, №4. – С. 24–28.
49. Ota Y., Yamada K. Lipase from Candida Paralipolytica. Agr. Biol. Chem., 1979, vol. 30, №1. – P. 351–358.
50. Ota Y. Lipids and related substances inducing the lipase production by Candida Paralipolytica. Agr. Biol. Chem., 1979, vol. 32, №3. – P. 390–391.
51. Безбородов А.М. Биотехнология продуктов микробного синтеза. М.: Агропромиздат, 1991. – 238 с.
52. Корчагина Л.Н., Рудюк В.Ф., Чербанова В.Т. Липолитические ферменты для медицинских целей. 1987. Вып. 1. С. 26.
53. Определитель бактерий Берджи (в 2-х тт.)/ Под ред. Дж. Хоулта, Н. Крига, П. Смита, Дж. Стейли, С. Уильямма. – М.: Мир, 1997. – 432 с.
54. Макаров Г.В. и др. Охрана труда в химической промышленности/ Макаров Г.В., Ванин А.Я., Маринина Л.К. – М.: Химия, 1989. – 556 с.
55. Дроздова С.Г. Основы техники безопасности в микробиологии и вирусологических исследованиях. – М.: Медицина, 1987. – 63 с.
56. Долин П.А. Справочник по технике безопасности. – М.: Энергоатом-издат, 1984. – 556 с.
57. Печников В.Г., Якушев В.П. Влияние пенообразования в водоеме на процесс развития бактерий (E.coli). – В кн. Биофизические аспекты загрязнения биосферы. М., Наука, 1973. – С. 112–113.
58. Ротмiстров М.М. и др. Вплив синтетичних поверхнево-активних речовин на мiкроорганiзми i очистка стiчних вод/ Ротмiстров М.М., Ставьска С.С., Таранова Л.А. – Вiсн. АН УССР, 1974, №3. – С. 73–83.
59. Prochazka G.J., Payne W.J. Bacterial growth as practical indicator of extensive biodegradability of organic compounds. – Appl. Microbiol., 1975, 13, №5, p. 702–705.
60. Bogan R.H., Sawyer C.N. Biochemical degradation of synthetic detergents. I. Preliminary studies. – Sen. Ind. Wast., 1984, 26, №9. – P. 1069–1080.
61. Riesen von L. Studies on bacteria-surface active agent relationships. 2. Hydrolysis of ester linkages in anionic compounds by gramnegative species as shown by Nile-blue sulgate. – Trans. Kansas Acad. Sci., 1986, 59, №3, p. 333–338.
62. Ротмистров М.Н. и др. Быстрый метод обнаружения бактерий, разлагающих алкилсульфаты/ Ротмистров М.Н., Ставская С.С., Кривец И.А. // Прикладная биохимия и микробиология, 1977, 13, №1. – С. 147–150.
63. Davis M., Gloyna E.F. The role of algae in degrading detergent surface active agents. – J. Water Poll. Contr. Fed., 1979, 41, №8, p. 1494–1504.
64. Ставська С.С., Таранова Л.А. Бiологiчний розклад анiонних детергентiв. – Вiсн. Ан УССР, 1975, №9. – С. 87–93.
65. Willets A.J., Cain R.B. Microbial metabolism of alkylbenzene sulfonates enzyme system of bacillus species responsible for oxidation of the alkyl side chain of alkylbenzen sulfonates. – Antonie van Leeuwenhoek. J. Microbial. And Serol. 1982, 38, №4, р. 543–555.
66. Heyman J.G., Moloff Al. Biodegradation linear of alkylated sulfonates. – Environ. Sci. And Technol., 1978, 20, №2, p. 773–778.
67. Удод В.М. и др. Микроорганизмы-деструкторы ряда неионогенных ПАВ/ Удод В.М., Подорван Н.И., Венгожен Г.С., Гвоздяк П.И. // Микробиология, 1983, т. 52. Вып.3. – С. 370–374.
68. Каплин Т.В. и др. Распад синтетических неионогенных веществ в природных водоемах/ Каплин Т.В., Шлыкова В.В., Долженко Л.С. // Гидрохимические материалы, 1988, 46. – С. 189–198.
69. Трифонова Т.В. и др. Биологическое разложение неионогенных поверхностно-активных веществ/ Трифонова Т.В., Панкина А.М., Юдина Н.М./ Анилинокрасочная пром-сть, 1974, №1. – С. 67–73.
70. Лукиных Н.А. Очистка сточных вод, содержащих синтетические поверхностно-активные вещества. М., Стройиздат, 1982. –
... продукции, а значит, дает значительный экономический эффект. 2. Объекты и методы исследования Целью дипломной работы являлось изучение свойств бактериальной суспензии, с последующим применением в подготовительных процессах переработки мехового сырья. Для выполнения эксперимента был составлен сетевой график, представленный на рисунке 1. Применение ферментов в кожевенной и ...
... Охрана окружающей среды Заключение Рисунок 2 – Сетевой график дипломной работы 2.1 Объекты исследования Объектом исследования в дипломной работе являлись микроорганизмы, выделенные из различных природных жиров: нерпичьего (Н), нерпичьего, выращенного на среде с шёрстным жиром (Нв), шерстного (В) и микроорганизмы, выделенные из ...
0 комментариев