Контрольная работа

По дисциплине:

«Высшая математика»

 

Тема:

 

«Длина дуги кривой в прямоугольных координатах»



1. Производная определенного интеграла по переменному верхнему пределу

Сформулируем следующее свойство определенных интегралов:

Пусть функция  непрерывна на . Составим для нее определенный интеграл . Пусть для определенности  на всем отрезке. Тогда с геометрической точки зрения составленный интеграл не что иное, как площадь криволинейной трапеции с основанием , которая ограничена линией .

Если в рассматриваемом интеграле заменить переменную интегрирования  на , то величина его, очевидно, не изменится. Поэтому в дальнейшем для удобства будем считать, что площадь трапеции определяется интегралом .

Величина определенного интеграла зависит от значений верхнего и нижнего пределов интегрирования, то есть от длины основания криволинейной трапеции. Рассмотрим поэтому теперь случай, когда нижний предел интеграла фиксирован и равен , а верхний может меняться, принимая значения , где . В этом случае определенный интеграл будет соответствовать площади криволинейной трапеции, величина которой меняется. Зависеть эта площадь будет от значения , то есть . Если  будет меняться непрерывно, то и площадь трапеции будет меняться непрерывно, то есть  – непрерывная функция, которую можно дифференцировать.

Теорема. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, у которой переменная интегрирования заменена этим верхним пределом, то есть  или .

Для вычисления производной проделаем все стандартные операции. Зададим приращение аргументу: , что, в свою очередь, приведет к приращению функции: . Так как , а , то приращение функции определяется выражением:

.

Применим к полученному выражению теорему о среднем в определенном интеграле:

, где .


Составим отношение . Чтобы получить производную , перейдем в составленном отношении к пределу: . Так как , то при стремлении  точка  будет стремиться к . Следовательно, вычисление предела приведет к выражению: .

Из доказанной теоремы следует, что  – это первообразная от , следовательно, определенный интеграл  также является первообразной от , и вычислять его, очевидно, необходимо с помощью тех же приемов, что и неопределенный интеграл.


Информация о работе «Длина дуги кривой в прямоугольных координатах»
Раздел: Математика
Количество знаков с пробелами: 11241
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
17597
0
8

... можно показать, что формулы будут справедливы и в случае y!!<0. Параметрическое задание кривой Если кривая задана параметрически: x = j(t), y = y(t), то координаты центра кривизны можно получить из формул *, подставляя в них вместо y! и y!! их выражения через параметр: . Тогда (2) Эволюта и эвольвента Если в точке M1(x, y) данной линии кривизна отлична от нуля, то этой точке соответствует ...

Скачать
46169
0
217

... и докажите сходимость полученного разложения к порождающей функции. Исследовать на абсолютную и условную сходимость . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 12 Сформулируйте теорему Ролля и объясните ее геометрический смысл. Исследуйте функцию на выпуклость и вогнутость. Какая ...

Скачать
13744
0
0

... дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности. Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например: ·  параболическая спираль (а - r)2 = bj, ·  гиперболическая спираль: r = а/j. ·  Жезл: r2 = a/j ·  si-ci-cпираль, параметрические уравнения которой имеют вид: , [si (t) и ci ...

Скачать
57781
2
39

... , повысить интерес к учению; 3) углубить знания, полученные на уроках математики. Ход занятия I. Организационный момент II. Основная часть 1)      Лекция об истории изучения плоских кривых [см. гл. I § 1] 2)      Задание Ребята, разгадаем с вами кроссворд: ПАСКАЛЬ ПАПИРУС АПОЛЛОНИЙ РОБЕРВАЛЬ АРХИМЕД ГЕОМЕТРИЯ По горизонтали 1.                  Учёный, считавший, что дуга спирали ...

0 комментариев


Наверх