3. Проверить выполнение предпосылок МНК.

Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.

·  В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.

·  Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.

·  Случайные члены для любых двух разных наблюдений независимы (некоррелированы).

·  Распределение случайного члена является нормальными.

1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.

Количество повторных точек определим по графику остатков: p=5

Вычислим критическое значение по формуле:

.

При  найдем

Схема критерия:

Сравним , следовательно, свойство случайности для ряда остатков выполняется.

1.  Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить: .

Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.

В упорядоченных по возрастанию переменной X исходных данных () выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.

С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов .

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 107,7894737 107,7894737 15,67347 0,15751
Остаток 1 6,877192982 6,877192982
Итого 2 114,6666667

С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов .

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 4,166666667 4,166666667 0,186916 0,707647
Остаток 2 44,58333333 22,29166667
Итого 3 48,75

Рассчитаем статистику критерия:

.

Критическое значение при уровне значимости и числах степеней свободы  составляет .

Схема критерия:

Сравним , следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.


Информация о работе «Методы решения уравнений линейной регрессии»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 14759
Количество таблиц: 4
Количество изображений: 6

Похожие работы

Скачать
18722
16
4

... 106,09 14,97 1,97 3,88 1,53 2,34 сумма 133 219 3211 2161 264,90 392,1 24,43 106,37 0,26 78,80 ср. знач. 13,3 21,9 321,1 216,1 ; Уравнение линейной регрессии имеет вид: у=11,78+0,76х С увеличением объема капиталовложений на 1 млн. руб. объем выпускаемой продукции увеличится в среднем на 76 тыс. руб ...

Скачать
18598
21
7

Сумма 133 219 2161 3211 Ср. значение 13,3 21,9 216,1 321,1 Найдем b: Тогда Уравнение линейной регрессии имеет вид: ŷx=11,779+0,761x. Коэффициент регрессии показывает среднее изменение результата с изменением фактора на одну единицу. С увеличением объема капиталовложений на 1 млн. рублей объем выпускаемой продукции увеличится в ...

Скачать
19930
9
16

... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...

Скачать
29919
21
7

... если нужно проверить различается ли разброс данных (дисперсии) у двух выборов. Это может использоваться при сравнении точностей обработки деталей на двух станках, равномерности продаж товара в течении некоторого периода в двух городах и т.д. Для проверки статистической гипотезы, о равенстве дисперсий служит F – критерий Фишера. Основной характеристикой критерия является уровень значимости α, ...

0 комментариев


Наверх