2.  Для проверки независимости уровней ряда остатков используем критерий Дарбина–Уотсона

.

Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим ; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты .

Таким образом,

Схема критерия:

Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d’=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.

D’=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.

С помощью функции СУММПРОИЗВ найдем для остатков , следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.

Критическое значение для коэффициента автокорреляции определяется как отношение Ön и составляет для данной задачи

Сравнения показывает, что çr(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.

4) Соответствие ряда остатков нормальному закону распределения проверим с помощью критерия:

.

С помощью функций МАКС и МИН для ряда остатков определим , . Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет . Тогда:

Критический интервал определяется по таблице критических границ отношения  и при  составляет (2,67; 3,57).

Схема критерия:


2,995  (2,67; 3,57), значит, для построенной модели свойство нормального распределения остаточной компоненты выполняется.

Проведенная проверка предпосылок регрессионного анализа показала, что для модели выполняются все условия Гаусса–Маркова.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t–критерия Стьюдента ().

t–статистика для коэффициентов уравнения приведены в таблице 4.

Для свободного коэффициента  определена статистика .

Для коэффициента регрессии  определена статистика .

Критическое значение  найдено для уравнения значимости  и числа степеней свободы  с помощью функции СТЬЮДРАСПОБР.

Схема критерия:

Сравнение показывает:

, следовательно, свободный коэффициент a является значимым.

, значит, коэффициент регрессии b является значимым.

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F–критерия Фишера (), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.

Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет .

Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.

Проверим значимость полученного уравнения с помощью F–критерия Фишера.

F–статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет .

Критическое значение  найдено для уровня значимости  и чисел степеней свободы , .

Схема критерия:

 

Сравнение показывает: ; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.

Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле

 

с помощью функции ABS (таблица 5).



ВЫВОД ОСТАТКА

Наблюдение Предсказанное Y Остатки Отн. Погр-ти
1 27,14150943 6,858490566 20,17%
2 29,30660377 -3,306603774 12,72%
3 30,02830189 -6,028301887 25,12%
4 35,08018868 2,919811321 7,68%
5 35,80188679 -0,801886792 2,29%
6 40,13207547 -0,132075472 0,33%
7 45,90566038 -3,905660377 9,30%
8 45,90566038 5,094339623 9,99%
9 46,62735849 -1,627358491 3,62%
10 48,07075472 0,929245283 1,90%

По столбцу относительных погрешностей найдем среднее значение  (функция СРЗНАЧ).

Схема проверки:

Сравним: 9,31% < 15%, следовательно, модель является точной.

Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости , если прогнозное значение фактора X составит 80% от его максимального значения.

Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно, . Рассчитаем по уравнению модели прогнозное значение показателя У:

.

Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.

Зададим доверительную вероятность  и построим доверительный прогнозный интервал для среднего значения Y.

Для этого нужно рассчитать стандартную ошибку прогнозирования:

Предварительно подготовим:

- стандартную ошибку модели  (Таблица 2);

- по столбцу исходных данных Х найдем среднее значение  (функция СРЗНАЧ) и определим  (функция КВАДРОТКЛ).

Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:

При  размах доверительного интервала для среднего значения

Границами прогнозного интервала будут

Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.


Информация о работе «Методы решения уравнений линейной регрессии»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 14759
Количество таблиц: 4
Количество изображений: 6

Похожие работы

Скачать
18722
16
4

... 106,09 14,97 1,97 3,88 1,53 2,34 сумма 133 219 3211 2161 264,90 392,1 24,43 106,37 0,26 78,80 ср. знач. 13,3 21,9 321,1 216,1 ; Уравнение линейной регрессии имеет вид: у=11,78+0,76х С увеличением объема капиталовложений на 1 млн. руб. объем выпускаемой продукции увеличится в среднем на 76 тыс. руб ...

Скачать
18598
21
7

Сумма 133 219 2161 3211 Ср. значение 13,3 21,9 216,1 321,1 Найдем b: Тогда Уравнение линейной регрессии имеет вид: ŷx=11,779+0,761x. Коэффициент регрессии показывает среднее изменение результата с изменением фактора на одну единицу. С увеличением объема капиталовложений на 1 млн. рублей объем выпускаемой продукции увеличится в ...

Скачать
19930
9
16

... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...

Скачать
29919
21
7

... если нужно проверить различается ли разброс данных (дисперсии) у двух выборов. Это может использоваться при сравнении точностей обработки деталей на двух станках, равномерности продаж товара в течении некоторого периода в двух городах и т.д. Для проверки статистической гипотезы, о равенстве дисперсий служит F – критерий Фишера. Основной характеристикой критерия является уровень значимости α, ...

0 комментариев


Наверх