7. Представить графически фактические и модальные значения Y точки прогноза.
Для построения чертежа используем Мастер диаграмм (точечная) – покажем исходные данные (поле корреляции).
Затем с помощью опции Добавить линию тренда… построим линию модели:
тип → линейная; параметры → показывать уравнение на диаграмме.
Покажем на графике результаты прогнозирования. Для этого в опции Исходные данные добавим ряды:
Имя → прогноз; значения ; значения ;
Имя → нижняя граница; значения ; значения ;
Имя → верхняя граница; значения ; значения
8. Составить уравнения нелинейной регрессии: гиперболической; степенной; показательной.
8.1 Гиперболическая модель
Уравнение гиперболической функции:
= a + b/x.
Произведем линеаризацию модели путем замены X = 1/x. В результате получим линейное уравнение
= a + bX.
Рассчитаем параметры уравнения по данным таблицы 2.
b = =
а = =38,4+704,48*0,03=60,25.
Получим следующее уравнение гиперболической модели:
= 60,25-704,48/х.
8.2 Степенная модель
Уравнение степенной модели имеет вид: =аxb
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:
lg = lg a + b lg x.
Обозначим через
Y=lg , X=lg x, A=lg a.
Тогда уравнение примет вид: Y = A + bX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы 3.
b = =
A = = 1,57-0,64*1,53=0,59
Уравнение регрессии будет иметь вид: Y = 0,59+0,64* Х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения.
= 100,59* х0,64.
Получим уравнение степенной модели регрессии:
= 3,87* х0,64.
8.3 Показательная модель
Уравнение показательной кривой: =abx.
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого осуществим логарифмирование обеих частей уравнения:
lg = lg a + x lg b.
Обозначим: Y = lg , B = lg b, A = lg a. Получим линейное уравнение регрессии: Y = A + B x. Рассчитаем его параметры, используя данные таблицы 4.
В = =
А = = 1,57-0,01*35,6=1,27
Уравнение будет иметь вид: Y = 1,27+0,01х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:
=101,27* ( 100,01)х = 18,55*1,02х.
Графики построенных моделей:
Рис.3. Гиперболическая
Рис.4. Степенная
Рис.5. Показательная
... 106,09 14,97 1,97 3,88 1,53 2,34 сумма 133 219 3211 2161 264,90 392,1 24,43 106,37 0,26 78,80 ср. знач. 13,3 21,9 321,1 216,1 ; Уравнение линейной регрессии имеет вид: у=11,78+0,76х С увеличением объема капиталовложений на 1 млн. руб. объем выпускаемой продукции увеличится в среднем на 76 тыс. руб ...
Сумма 133 219 2161 3211 Ср. значение 13,3 21,9 216,1 321,1 Найдем b: Тогда Уравнение линейной регрессии имеет вид: ŷx=11,779+0,761x. Коэффициент регрессии показывает среднее изменение результата с изменением фактора на одну единицу. С увеличением объема капиталовложений на 1 млн. рублей объем выпускаемой продукции увеличится в ...
... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...
... если нужно проверить различается ли разброс данных (дисперсии) у двух выборов. Это может использоваться при сравнении точностей обработки деталей на двух станках, равномерности продаж товара в течении некоторого периода в двух городах и т.д. Для проверки статистической гипотезы, о равенстве дисперсий служит F – критерий Фишера. Основной характеристикой критерия является уровень значимости α, ...
0 комментариев