8. Определите «на глаз» вид каждого из треугольников, изображенных на слайдах (рис. 7).
Рис. 7
III. Ученики, работающие по карточкам, сдают выполненное задание. Те, кто работал у доски, рассказывают, как выполняли задание. Дополнительные вопросы им задают ученики.
IV. Итак, на предыдущем уроке мы познакомились с треугольником и изучили их виды.
· Как же построить равнобедренный треугольник с помощью циркуля и линейки?
· Ученики предлагают провести произвольный отрезок, затем из концов отрезка как из центров, не меняя раствора циркуля, провести дуги до пересечения. Точку пересечения соединить с концами отрезка.
· Почему вы уверены, что получился равнобедренный треугольник?
(Взяли раствор циркуля, не равный построенному отрезку и провели дуги равных окружностей. Точка их пересечения находится на равном расстоянии от концов отрезка.)
Вводится название сторон: основание, боковые стороны (рис. 8).D ABC: AB = BC, ÐA = ÐC.
Рис. 8
Большинство учеников получают равные градусные меры, и учитель сообщает, что именно таким образом в Древней Греции практическим путем установили, что «углы при основании» равны. И лишь много лет спустя это было доказано.
V. Физкультурная пауза
(Ученики повторяют за учителем все движения.)
VI. Продолжаем работу.
Соедините вершину B с серединой противоположной стороны. Измерьте углы BMC и BMA. Что вы получили?Ученики делают вывод: ÐBMC = ÐBMA = 90° и дополняют рисунок. Используя модель равнобедренного треугольника, учитель перегибает модель по отрезку BM. Ученики замечают, что треугольники ABM и BMC при наложении совпали, и делают вывод: D ABM = D BMC.
VII. Задание на дом
1. Постройте равнобедренный треугольник.
2. Измерьте все его углы. Сделайте вывод.
3. Проведите отрезки, соединяющие вершины с серединами противоположных сторон. Что вы заметили?
УРОК 3
Тема урока: «Построение треугольников. Равенство треугольников»
Цели урока:
научить учеников строить треугольник, равный данному, используя циркуль и линейку; из опыта практической деятельности учащиеся должны понять, что треугольники равны по трем элементам; каждая сторона треугольника меньше суммы двух других.Оборудование: у каждого ученика набор чертежных инструментов, цветная бумага, ножницы.
Ход урока
I. Работа с классом
На доске изображены фигуры.
Задания
1. На рисунке 9 проведите прямую так, чтобы она разбила четырехугольник на два треугольника. Определите «на глаз» вид получившихся треугольников.
Рис. 9
2. Проведите прямую так, чтобы она разбила четырехугольник (рис. 10) на треугольник и четырехугольник, а на рисунке 11 – на треугольник и пятиугольник.
|
|
3. Проволоку длиной 15 см согнули так, что получился разносторонний треугольник. Чему равен периметр этого треугольника?
4. Основание равнобедренного треугольника равно 4 см, а боковые стороны вдвое больше основания. Найдите периметр треугольника.
5. В равнобедренном треугольнике один из углов равен 64°. Найдите два других угла этого треугольника.
II. Работа в группах из четырех человек
(Задание для каждой группы с разными данными.)
Постройте треугольник ABC, если:1) AB = 5 см, AC = 8 см, Р BAC = 50°;
2) CA = 4 см, CB = 6 см, Р ABC = 120°;
3) AB = 7 см, Р CAB = 60°, Р CBA = 30°;
4) OP = 4 см, Р KOP = 20°, Р OPK = 70°;
5) KL = 4 см, LM = 3 см, MK = 2,5 см;
6) AB = 3 см, BC = 4 см, AC = 5 см.
Три группы из шести групп рассказывают, как проводили построение.
Вырежьте получившийся треугольник. Сравните его с треугольниками, построенными учениками из своей группы.В каждой группе получили равные треугольники. Казалось бы, ничего удивительного нет, данные были одинаковы, но ...
III. Общее задание
· Постройте треугольник, в котором Ð A = 30°, Ð B = 60°, Ð C = 90°.
· Что вы замечаете? Какой вывод можно сделать? (У всех разные треугольники.)
IV. Работа в группах
(Задание одинаково для пар групп.)
Постройте треугольники, у которых стороны равны:1) 6 см, 2 см, 3 см;
2) 6 см, 2 см, 4 см;
3) 6 см, 2 см, 7 см.
В ходе построений и рассуждений ученики приходят к выводу, что у треугольника каждая сторона меньше суммы двух других сторон, в противном случае треугольник построить невозможно.
V. Минутка отдыха
Передайте свое настроение с помощью изображения треугольника.Кто-то раскрашивает треугольник в разные цвета, кто-то составляет фигурки из треугольников, кто-то изображает рожицы, проявляя выдумку и фантазию (рис. 12, 13).
|
|
VI. Проверочная работа
Вариант 1
1. Постройте равнобедренный тупоугольный треугольник.
2. В треугольнике DCE ÐD = 24°, ÐC = 58°. Найдите ÐE.
3. Основание равнобедренного треугольника равно 6 см, а боковые стороны в три раза больше. Найдите периметр треугольника.
... математики: буквы этого языка – окружности, треугольники и прочие математические фигуры». V. Домашняя задача. Прочитать пункт 33, решить задачи 19(2), 22(2), 26 из параграфа 4 учебника. 2.2. УРОК 2 Тема. Признаки параллельности прямых (Часть 1). Цель: ввести понятия секущей, внутренних односторонних углов, внутренних разносторонних углов, доказать теоремы 4.1, 4.2, сформулировать теорему 4.3 (без ...
... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с помощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание относят к области мифологии. Неопозитивизм, Слабость педагогики неопозитивисты усматривают в том, что в ней доминируют бесполезные идеи и абстракции, а не реальные факты. Яркий ...
... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...
... проблемного характера, задания, связанные с классификацией, анализом и синтезом, опорные схемы. Всё это составляет приёмы познавательной деятельности учащихся. Глава 3. Приёмы активизации учащихся в процессе обучения математике в начальных классах при изучении нумерации многозначных чисел 3.1. Сущность приёмов активизации Для того, чтобы добиться активности учащихся на уроке математике, ...
0 комментариев