Содержание
Задание на курсовую работу ....................................................................... 2
Замечания руководителя .............................................................................. 3
1. Бесселевы функции с любым индексом ................................................... 5
2. Формулы приведения для бесселевых функций ..................................... 10
3. Бесселевы функции с полуцелым индексом ............................................. 13
4. Интегральное представление бесселевых функций с целым индексом .. 15
5. Ряды Фурье-Бесселя ................................................................................. 18
6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента ...................................................................................... 23
Список литературы ...................................................................................... 30
1. Бесселевы функции с любым индексом
Уравнение Лапласа в цилиндрических координатах
Чтобы объяснить происхождение бесселевых функций, рассмотрим уравнение Лапласа в пространстве:
. (1)
Если перейти к цилиндрическим координатам по формулам:
, , ,
то уравнение (1) примет следующий вид:
. (2)
Поставим задачу: найти все такие решения уравнения, которые могут быть представлены в виде произведения трех функций, каждая из которых зависит только от одного аргумента, то есть найти все решения вида:
,
где , , предполагаются дважды непрерывно дифференцируемыми.
Пусть есть решение упомянутого вида. Подставляя его в (2), получим:
,
откуда (после деления на )
.
Записав это в виде:
,
найдем, что левая часть не зависит от , правая не зависит от , ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:
; ;
; ;
.
В последнем равенстве левая часть не зависит от , правая не зависит от ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:
, ;
, .
Таким образом, , , должны удовлетворять линейным дифференциальным уравнениям второго порядка:
,
(3)
, ,
из которых второе и третье есть простейшие линейные уравнения с постоянными коэффициентами, а первое является линейным уравнением с переменными коэффициентами нового вида.
Обратно, если , , удовлетворяют уравнениям (3), то есть решение уравнения (2). В самом деле, подставляя в левую часть (2) и деля затем на , получим:
.
Таким образом, общий вид всех трех решений уравнения (2), которые являются произведением трех функций, каждая из которых зависит от одного аргумента, есть , где , , – любые решения уравнений (3) при любом выборе чисел , .
Первое из уравнений (3) в случае , называется уравнением Бесселя. Полагая в этом случае , обозначая независимую переменную буквой (вместо ), а неизвестную функцию – буквой (вместо ), найдем, что уравнение Бесселя имеет вид:
. (4)
Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами играет большую роль в приложениях математики. Функции, ему удовлетворяющие, называются бесселевыми, или цилиндрическими, функциями.
Бесселевы функции первого рода
Будем искать решение уравнения Бесселя (4) в виде ряда:
.
Тогда
,
,
,
.
Следовательно, приходим к требованию
или к бесконечной системе уравнений
,
которая распадается на две системы:
Первая из них удовлетворится, если взять … Во второй системе можно взять произвольно; тогда … однозначно определяются (если не является целым отрицательным числом). Взяв
,
найдем последовательно:
,
,
,
и в качестве решения уравнения (4) получим ряд:
Этот ряд, формально удовлетворяющий уравнению (4), сходится для всех положительных значений и, следовательно, является решением уравнения (4) в области (в случае целого в области ).
Функция
(5)
называется бесселевой функцией первого рода с индексом . Она является одним из решений уравнения Бесселя (4). В случае целого неотрицательного индекса получим:
, (5`)
и, в частности,
. (5``)
Общее решение уравнения Бесселя
В случае нецелого индекса функции и являются решениями уравнения (4). Эти решения линейно независимы, так как начальные члены рядов, изображающих эти функции, имеют коэффициенты, отличные от нуля, и содержат разные степени . Таким образом, в случае нецелого индекса общее решение уравнения Бесселя есть:
. (6)
Если (целое отрицательное число), то функция, определяемая формулой (5) (учитывая, что равно нулю для …), принимает вид:
(5```)
или, после замены индекса суммирования на ,
, (7)
откуда видно, что удовлетворяет вместе с уравнению Бесселя
.
Но формула (6) в случае целого уже не дает общего решения уравнения (4).
Полагая
( – не целое) (8)
и дополняя это определение для (целое число) формулой:
, (8`)
получим функцию , удовлетворяющую уравнению Бесселя (4) и во всех случаях линейно независимую от (в случае , где – целое). Функция называется бесселевой функцией второго рода с индексом . Общее решение уравнения Бесселя (4) можно записать во всех случаях в виде:
. (9)
... К. Лавриновича «Фридрих Вильгельм Бессель, 1784 – 1846: Астроном, геодезист, математик»,[2] а также справочные издания и энциклопедии, в том числе Брокгауза и Евфрона. §1. Начало научной деятельности Бесселя Немецкий астроном и математик Фридрих Вильгельм Бессель родился в небольшом городе Минден на северо-западе Германии в семье мелкого чиновника в 1784 году. С 15 лет должен был встать на ...
... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице. Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...
... В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109. Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103. Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения
... к задаче [6]: найти регулярное в области решение уравнения (1), непрерывное вместе с производной в замкнутой области и удовлетворяющее граничным условиям (4) и . Решение этой задачи задается формулой : где – функция Грина этой задачи для уравнения . (28) Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид: где ; ; – функция Бесселя. Функции , ...
0 комментариев