5. Ряды Фурье-Бесселя
Рассмотрим на каком-либо интервале (конечном или бесконечном) два дифференциальных уравнения
, , (20)
где и – непрерывные функции на . Пусть и – ненулевые решения этих уравнений. Умножение на и на и последующее вычитание дают
.
Пусть и принадлежат и , тогда после интегрирования в пределах от до получим
. (21)
Если и – соседние нули решения , то между и сохраняет постоянный знак, пусть, например, на (, ) (в противном случае следует заменить на ), тогда , (равенство нулю исключено, так как – ненулевое решение дифференциального уравнения второго порядка). Если на , то должна, по крайней мере, раз обращаться в нуль между и , так как иначе сохранит постоянный знак на (,). Пусть, например, на (,) (в противном случае заменяем на ), и тогда из (21) получим противоречие, ибо левая часть ≤0, а правая >0. Таким образом доказана теорема сравнения Штурма: если P(x)<Q(x) на рассматриваемом интервале I и если y и z – ненулевые решения уравнений (20), то между каждыми двумя соседними нулями y(x) находится по крайней мере один нуль z(x).
Из теоремы сравнения Штурма вытекают нижеследующие следствия. Если на , то каждое ненулевое решение уравнения может иметь на не более одного нуля (это легко видеть, если положить и взять ). Если на (где ), то для всяких двух соседних нулей и () каждого ненулевого решения уравнения имеем (это легко видеть, если положить , взять и заметить, что нулями будут только числа вида , целое). Если на (где ), то для всяких двух соседних нулей каждого ненулевого решения уравнения имеем (это легко видеть, если положить и взять ). Из сказанного следует, что если на , то для всяких двух соседних нулей и () каждого ненулевого решения уравнения имеем .
Изложенное показывает, что если непрерывна на и превышает некоторое положительное число вблизи +∞, то каждое ненулевое решение уравнения имеет на бесконечно много нулей. Если еще вблизи не обращается в нуль, то эти нули образуют бесконечную возрастающую последовательность , имеющую пределом +∞, а если, кроме того, , где , то .
Рассмотрим уравнение Бесселя
на интервале . Подстановка приводит к уравнению
.
Очевидно, и имеют одни и те же нули. Так как , где – целая функция, то не имеет нулей на при достаточно малом , и так как при , то при каждом нули на образуют бесконечную возрастающую последовательность
причем .
Если , то удовлетворит уравнению
на интервале (0, +∞). Подстановка приводит к уравнению
и, следовательно, удовлетворяет этому уравнению. Таким образом, при любых положительных и имеем
, где ,
, где ,
откуда
,
следовательно,
, где . (22)
Пусть теперь . Разложение по степеням начинается с члена, содержащего , разложение по степеням начинается с члена, содержащего , так как коэффициент при равен нулю, что легко видеть, исходя из формулы (5). Следовательно, из (22) при получим
,
то есть
, (23)
откуда видно, что если и являются разными нулями функции , то
. (23`)
Этим доказано, что при система функций
на интервале является ортогональной относительно веса .
Переходя к пределу при в соотношении
и используя правило Лопиталя, получим при всяком
, (24)
следовательно, если является нулем функции , то
. (24`)
Таким образом, при каждом всякой непрерывной функции на , удовлетворяющей требованию
,
поставлен в соответствие ряд Фурье-Бесселя
, (25)
коэффициенты которого определяются формулами
. (25`)
Можно доказать, что система функций на , ортогональная относительно веса , замкнутая. В частности, если ряд Фурье-Бесселя (25) равномерно сходится к порождающей его непрерывной функции .
Можно показать, что если и непрерывная на и кусочно-гладкая на функция, то ряд Фурье-Бесселя этой функции сходится к ней при .
... К. Лавриновича «Фридрих Вильгельм Бессель, 1784 – 1846: Астроном, геодезист, математик»,[2] а также справочные издания и энциклопедии, в том числе Брокгауза и Евфрона. §1. Начало научной деятельности Бесселя Немецкий астроном и математик Фридрих Вильгельм Бессель родился в небольшом городе Минден на северо-западе Германии в семье мелкого чиновника в 1784 году. С 15 лет должен был встать на ...
... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице. Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...
... В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109. Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103. Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения
... к задаче [6]: найти регулярное в области решение уравнения (1), непрерывное вместе с производной в замкнутой области и удовлетворяющее граничным условиям (4) и . Решение этой задачи задается формулой : где – функция Грина этой задачи для уравнения . (28) Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид: где ; ; – функция Бесселя. Функции , ...
0 комментариев