2. Формулы приведения для бесселевых функций
Имеем:
; ;
, ;
.
Следовательно,
. (10)
Таким образом, операция (состоящая в дифференцировании с последующим умножением на ), примененная к , повышает в этом выражении индекс на единицу и меняет знак. Применяя эту операцию раз, где – любое натуральное число, получаем:
. (10`)
Имеем:
;
Следовательно,
. (11)
Таким образом, операция , примененная к , понижает в этом выражении индекс на единицу. Применяя эту операцию раз, получаем:
. (11`)
Из выведенных формул можно получить некоторые следствия. Используя (10), получим:
; ; .
Отсюда, в частности, следует, что . Используя (11), получим:
; ; .
Почленное сложение и вычитание полученных равенств дает:
, (12)
. (13)
Формула (13) позволяет выразить все бесселевы функции с целыми индексами через , . Действительно, из (13) находим (полагая ):
, (13`)
откуда последовательно получаем:
,
, …………………
3. Бесселевы функции с полуцелым индексом
Бесселевы функции, вообще говоря, являются новыми трансцендентными функциями, не выражающимися через элементарные функции. Исключение составляют бесселевы функции с индексом , где – целое. Эти функции могут быть выражены через элементарные функции.
Имеем:
,
,
следовательно,
.
Но , значит:
. (14)
Далее
,
,
следовательно,
.
Но , поэтому
. (15)
С помощью (10`) находим:
,
а учитывая (14)
,
следовательно, при целом положительном
. (14`)
С помощью (11`) находим:
,
но в силу (15)
,
и, следовательно, при целом положительном
. (15`)
... К. Лавриновича «Фридрих Вильгельм Бессель, 1784 – 1846: Астроном, геодезист, математик»,[2] а также справочные издания и энциклопедии, в том числе Брокгауза и Евфрона. §1. Начало научной деятельности Бесселя Немецкий астроном и математик Фридрих Вильгельм Бессель родился в небольшом городе Минден на северо-западе Германии в семье мелкого чиновника в 1784 году. С 15 лет должен был встать на ...
... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице. Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...
... В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109. Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103. Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения
... к задаче [6]: найти регулярное в области решение уравнения (1), непрерывное вместе с производной в замкнутой области и удовлетворяющее граничным условиям (4) и . Решение этой задачи задается формулой : где – функция Грина этой задачи для уравнения . (28) Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид: где ; ; – функция Бесселя. Функции , ...
0 комментариев