4. Интегральное представление бесселевых функций с целым индексом

 

Производящая функция системы функций

Рассмотрим систему  функций  (с любой общей областью определения), пронумерованных с помощью всех целых чисел:

Составим ряд

,

где  – комплексная переменная. Предположим, что при каждом  (принадлежащем области определения рассматриваемых функций) этот ряд имеет кольцо сходимости, содержащее внутри себя единичную окружность . В частности, это кольцо может представлять собой полную плоскость комплексной переменной без точек 0 и ∞.

Функция

(16)

(где x лежит в области определения функций системы ,  – внутри кольца сходимости, соответствующего рассматриваемому значению ) называется производящей функцией системы .

Обратно, пусть задана функция , где  пробегает некоторое множество,  находится внутри некоторого кольца, зависящего от , с центром 0 и содержащего внутри себя единичную окружность. Тогда, если  при каждом  аналитична относительно  внутри соответствующего кольца, то  есть производящая функция некоторой системы  функций. В самом деле, разложив при каждом  функцию  в ряд Лорана по степеням :

,

найдем, что система коэффициентов  этого ряда будет искомой системой .

Формулы для коэффициентов ряда Лорана позволяют выразить функции  рассматриваемой системы через производящую функцию. Применяя эти формулы и преобразовывая затем интеграл вдоль единичной окружности  в простой интеграл, получим:

. (17)

Производящая функция системы бесселевых функций с целыми индексами

Покажем, что для системы бесселевых функций первого рода с целыми индексами  (…) производящая функция есть:

.

Имеем:

, ,

откуда после почленного перемножения этих равенств найдем:

(так как в предпоследней внутренней сумме  и  были связаны зависимостью , то мы могли положить , получив суммирование по одному индексу ). В последней внутренней сумме суммирование производится по всем целым , для которых , следовательно, при  это будет ; при  это будет . Таким образом, во всех случаях внутренняя сумма есть  в силу формул (5`) и (5```). Итак,

, (18)

но это и доказывает, что  есть производящая функция для системы .

Выведем некоторые следствия из формулы (18). Полагая в ней , получим:

,

откуда после разделения действительной и мнимой части (учитывая, что )

 (18`)

(18``)

Заменяя в (18`) и (18``)  на , найдем:

, (18```)

. (18````)

Интегральное представление Jn(x)

Так как, по доказанному, при  имеем , то по формуле (17) получаем (используя в преобразованиях формулы Эйлера):

где принято во внимание, что  есть четная функция от  есть нечетная функция от . Итак, доказано, что для любого целого числа

. (19)

Формула (19) дает представление бесселевых функций с целым индексом в виде определенного интеграла, зависящего от параметра . Эта формула называется интегральным представлением Бесселя для , правая часть формулы называется интегралом Бесселя. В частности, при  найдем:

. (19`)



Информация о работе «Уравнение и функция Бесселя»
Раздел: Математика
Количество знаков с пробелами: 16512
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
18507
0
1

... К. Лавриновича «Фридрих Вильгельм Бессель, 1784 – 1846: Астроном, геодезист, математик»,[2] а также справочные издания и энциклопедии, в том числе Брокгауза и Евфрона. §1. Начало научной деятельности Бесселя Немецкий астроном и математик Фридрих Вильгельм Бессель родился в небольшом городе Минден на северо-западе Германии в семье мелкого чиновника в 1784 году. С 15 лет должен был встать на ...

Скачать
34911
1
21

... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице.   Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...

Скачать
5154
0
3

... В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109. Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103. Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения

Скачать
5268
0
10

... к задаче [6]: найти регулярное в области  решение уравнения (1), непрерывное вместе с производной  в замкнутой области  и удовлетворяющее граничным условиям (4) и . Решение этой задачи задается формулой : где  – функция Грина этой задачи для уравнения . (28) Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид: где ; ; – функция Бесселя. Функции ,   ...

0 комментариев


Наверх