6. Приложение теоремы Гурвица
В 1878 г. Немецкий математик Г. Фробениус доказал следующую замечательную теорему.
Теорема Фробениуса. Любая ассоциативная алгебра с делением изоморфна одной из трех: алгебре действительных чисел, алгебре комплексных чисел или алгебре кватернионов.
Впоследствии был установлен более общий результат, который можно назвать обобщенной теоремой Фробениуса.
Обобщенная теорема Фробениуса. Любая альтернативная алгебра с делением изоморфна одной из четырех алгебр: алгебре действительных чисел, алгебре комплексных чисел, алгебре кватернионов или алгебре октав.
Альтернативной алгеброй называется алгебра, в которой для любых двух элементов a, b справедливы равенства ,
.
Чтобы доказать эти теоремы, перечислим сначала некоторые свойства ассоциативной алгебры с делением.
Утверждение 1. Алгебра А содержит 1.
Утверждение 2. Если элемент не пропорционален 1, то совокупность
элементов вида
образует подалгебру, изоморфную алгебре комплексных чисел.
Утверждение 3. Если элементы не принадлежат одной подалгебре
, то совокупность
элементов вида
образует подалгебру, изоморфную алгебре кватернионов.
Доказательство теоремы Фробениуса.
Дадим сначала другое определение альтернативной алгебры.
Пусть a, b –два произвольных элемента алгебра А. Рассмотрим всевозможные произведения, составленные из них. Если каждое такое произведение не зависит от способа расстановки скобок, алгебра А называется альтернативной.
При доказательстве теоремы будем использовать второе определение альтернативности, т.е. докажем следующую теорему: Если алгебра А с делением такова, что любое произведение, составленное из двух произвольных элементов a, b, не зависит от расстановки скобок, то алгебра А изоморфна одной из четырех алгебр: алгебре действительных чисел, алгебре комплексных чисел, алгебре кватернионов или алгебре октав.
Доказательство утверждения 1. Найдя элемент е из уравнения xa=a и умножив обе части равенства ea=a слева на е, получим e(ea)=ea или, учитывая ее альтернативность, (ee)a=ea. Отсюда следует, что ее=е. Опять-таки в силу альтернативности имеем (be)e=b(ee) и e(ec)=(ee)c, т.е. (be)e=be и e(ec)=ec. Отсюда следует be=b и ec=c. Значит е - единица алгебры.
Другие утверждения примем без доказательства.
Попытаемся доказать, что алгебра А является нормированной. Отсюда по теореме Гурвица будет следовать нужный нам результат.
Введем в алгебре А операцию сопряжения следующим образом. Если элемент а пропорционален 1, то . Если же а не пропорционален 1, то, согласно утверждению 2, он содержится в комплексной подалгебре
. В этой подалгебре для элемента а имеется сопряженный элемент
, который мы и примем за элемент, сопряженный к а в алгебре А.
Из определения непосредственно вытекает
, а также
, где
- любое.
Для вывода других свойств сопряжения нам необходимо выяснить один вопрос. Пусть элемент а не пропорционален 1. Рассмотрим какую-либо кватернионную подалгебру , содержащую а. В этой подалгебре для а тоже имеется сопряженный элемент
. Будет ли он совпадать с определенным выше элементом
? Покажем, что будет.
Элементы а и , как сопряженные в комплексной алгебре, удовлетворяют условиям
и
, где t, p – действительные числа.
Элементы а и как сопряженные в алгебре кватернионов удовлетворяют аналогичным условиям:
и
, где k, l – действительные числа.
Вычтем из последних равенств предыдущие, получим: и
и если
, то из этих соотношений вытекает, что элемент а пропорционален 1, что противоречит предположению.
Т.о., элемент, сопряженный а, один и тот же, независимо от того, рассматриваем ли мы а как элемент комплексной подалгебры (т.е. как комплексное число) или же как элемент какой-либо подалгебры
(т.е. как кватернион).
Заметим попутно, что то же самое относится и к модулю элемента а. Поскольку как в случае комплексных чисел, так и в случае кватернионов, то модуль элемента а не зависит от ого, рассматриваем ли мы а как элемент комплексной или же кватернионной подалгебры.
Из того, что доказано нами относительно сопряжения, легко следует, что для любых двух элементов a и b алгебры А справедливы равенства
,
Действительно, если a и b принадлежат одной комплексной подалгебре (т.е. совпадает с
), то написанные равенства суть свойства сопряжения в этой подалгебре; если же b не содержится в
, то эти равенства снова справедливы – уже как свойства сопряжения в
.
Из и из
вытекает, что элемент, сопряженный
равен
; следовательно,
, n – действительное число.
Определим в алгебре А скалярное произведение (a, b) с помощью формулы . Что выражение (a, b) обладает всеми свойствами скалярного произведения, проверяется просто. Напомним эти свойства:
, если
и (0,0)=0
В данном случае свойство 2 очевидно, 2-е свойство вытекает из , 3-е из
. Для доказательства 1-го свойства следует написать
и учесть, что модуль комплексного числа а строго положителен, если , и равен нулю, если а=0.
Заметим, что из последнего равенства следует , т.е. норма элемента а в алгебре А совпадает с модулем а как комплексного числа (или кватерниона).
Т.к. любые 2 элемента a и b алгебры А принадлежат одной комплексной или одной кватернионной подалгебре, то (ведь алгебра комплексных чисел, так же как и алгебра кватернионов, является нормированной), или (ab,ab)=(a,a)(b,b). Но это равенство как раз и означает нормированность алгебры А. Дальше вступает теорема Гурвица, согласно которой алгебра А изоморфна одной из четырех алгебр: действительных чисел, кватернионов, октав. В этом как раз и заключается обобщенная теорема Фробениуса.[7]
Приведем еще одно применение теоремы Гурвица (или тождества Гамильтона).
Теорема Лагранжа.
.
Лемма. Для любого простого числа p>2 найдется число , такое что mp=a
+b
+c
, a, b, c
.
Доказательство:
Рассмотрим два множества чисел:
K={0, 1, 4, ..., }, L={-1-0, -1-1, -1-4, ..., -1-
}.
В каждом из множеств числа попарно несравнимы по модулю p. В самом деле, возьмем из множества K (или, эквивалентно, -1-k
-1-k
из множества L), где
,
. Если k
k
(mod p), то (k
+k
)(k
-k
)
0 (mod p). . Но 0< k
+k
<p и 0<| k
-k
|<p, поскольку k
<p/2, k
<p/2 и
. Противоречие.
Всего в этих двух множествах p+1 чисел, следовательно, среди них найдутся сравнимые по модулю p, т. е. такие числа из первого множества и
из второго, что
. Откуда
для некоторого
. Теперь, поскольку k<p/2,
<p/2, получаем mp=
<
<
, а значит, m<p. Лемма доказана.
Доказательство теоремы Лагранжа:
Докажем, что любое простое число представимо в виде суммы четырех квадратов целых чисел. Для p=2 имеем . Для p>2, по предыдущей лемме, найдется такое m<p, что число mp можно представить в виде mp=
(n
можно положить равным 0). Выберем теперь минимальное натуральное m, обладающее таким свойством. Покажем, что оно равно 1. Пусть m четно. Тогда либо все n
имеют одинаковую четность, либо среди них есть два четных и два нечетных (нумерация этих чисел не важна, поэтому пусть n
n
(mod 2), а n
n
(mod 2). В обоих случаях числа
являются целыми. Имеем:
=
,
значит, также представляется в виде суммы четырех квадратов целых чисел. Но
, а m, по предположению, минимальное число с таким свойством. Противоречие.
Пусть m нечетно. Тогда числа n можно представить в виде n
=q
m+m
(
). причем |m
|<
. Тогда
mp= =sm+
,
где s - некоторое целое число.
Следовательно, =mn , где n - неотрицательное целое число. Если n=0, то все m
=0, n
=q
m, и тогда mp=
=m
k, где k - натуральное, т. е. p=mk, m<p, а это означает, что m=1. Предположим теперь, что n
1. По теореме Гурвица получаем
()(
)=
, где
s=
,
s=
,
s=
,
s=
.
По определению, mn
(mod m), т. е. s
0(mod m) и, значит,
. Аналогично доказывается, что
при i=2, 3, 4. Но тогда (в силу неравенств |m
|<
) получаем: nm=
, т. е. n<m, и в итоге mp*nm=
, откуда np=
, что противоречит минимальности m. Итак, всякое простое число можно представить в виде суммы четырех квадратов целых чисел. Тогда, по теореме Гурвица, и любое составное число представимо в таком виде. Наконец, 1=
. Теорема доказана.[6]
Пример 3.
Заключение
Мы рассмотрели различные системы «чисел», которые можно построить, исходя из действительных чисел, путем добавления рядя «мнимых единиц». Доказали, что существуют тождества с большим, чем 2, числом квадратов и описали их (теорема Гурвица). Было выяснено, что
+
=+
+
Так же было найдено приложение теоремы Гурвица.
Я добилась целей, которые перед собой поставила.
Список используемой литературы
1. Charles W. Curtis “Linear algebra” An Introductory Approach (Fourth Edition), Springer Verlag, 1984, xvii - 347 pp.
2. Rowe David E. “Jewish Mathematics” at Göttingen in the Era of Felix Klein. Isis, Vol. 77, No. 3, (Sep., 1986) – 432 pp
3. Калужин Л. А. “Основная теорема арифметики, Популярные лекции по математике” М.: Наука, 1969 г. - 32 стр.
4. Кантор И.Л., Солодовников А.С. “Гиперкомплексные числа” М.: Наука, 1973. - 144 с.
5. Тиморин В.А. “Квадратичная математика” - 2005
6. Тихомиров В. М. “ Великие математики прошлого и их великие теоремы” М.: МЦНМО, 2003.- 16 с.
7. Херстейн И. “Некоммутативные кольца” М.: Мир, 1972. - 192 c.
... стратегии игрока В. Задача имеет решение игры, если её матрицы не содержит седловой точки (). Расчет выигрышей производится по целевой функции: Система ограничения: 2.3.Описания метода Гурвица 2.3.1. Выбираем по строкам наименьший выигрыш и заполняем колонку а. 2.3.2. Выбираем по строкам наибольший выигрыши и заполняем колонку 2.3.3. Производим расчёт выигрыша по формуле: ; ...
... процесс является колебательным и имеет А1 и А3 (первая и третья амплитуды переходного процесса), то можно найти и степень затухания. 6. Функциональная схема Системы Автоматического Управления в общем виде выглядит следующим образом: 7. Вывод Математическая модель объекта регулирования системы, полученная в работе, является достаточно адекватной исходным данным. Об ...
... , чем обычно. Общий заработок в 1000 $ они должны поделить следующим образом: певцу 350 $, пианисту 435 $, ударнику 175 $. Глава . Принятие решений в условиях частичной неопределенности. Элементы теории статистических решений. Предметом рассмотрения данного раздела служат статистические модели приянятия решений, трактуемые как статистические игры или игры с природой при использовании ...
... какая-либо из имеющихся. ж) Придумайте взвешивающую формулу (ее придется объяснить при защите курсовой работы!) и найдите по ней худшую и лучшую операции. 18. Произвести математико-статистический анализ за T лет Xt, Kt, Lt (t = 1, …, T) о выпуске продукции (в стоимостном виде), ОПФ и числе занятых исследуемого производственного экономического объекта: а) найти прогноз выпуска, фондов ...
0 комментариев