Федеральное агентство по образованию
Государственное муниципальное образовательное учреждение
высшего профессионального образования
Вятский Государственный Гуманитарный университет
(ВятГГУ)
Математический факультет
Кафедра математического анализа и методики преподавания математики
Выпускная квалификационная работа
«Операторные уравнения»
Выполнила:
студентка V курса
математического факультета
Кощеева Анна Сергеевна
Научный руководитель:
старший преподаватель кафедры математического анализа и МПМ
Гукасов Артур Константинович
_______________________
Рецензент:
Кандидат физико-математических наук, доцент кафедры математического анализа и МПМ
Подгорная Ирина Иссаковна
________________________
Допущен к защите в ГАК
Зав.кафедрой______________________ Крутихина М.В.
« »____________
Декан факультета__________________ Варанкина В.И.
« »____________
Киров 2005
Содержание
Введение_______________________________________________________ | 3 | |
Глава 1.Операторные уравнения.___________________________________ | 4 | |
§1. Определение линейного оператора________________________ | 4 | |
§2. Норма линейного оператора______________________________ | 5 | |
§3. Обратные операторы____________________________________ | 5 | |
§4. Абстрактные функции___________________________________ | 9 | |
§5. Аналитические абстрактные функции и ряды Тейлора________ | 11 | |
§6. Метод малого параметра в простейшем случае______________ | 12 | |
§7. Метод малого параметра в общем случае___________________ | 13 | |
§8. Метод продолжения по параметру________________________ | 15 | |
8.1. Формулировка основной теоремы___________________ | 15 | |
8.2. Простейший случай продолжения по параметру_______ | 16 | |
Глава 2. Приложение_____________________________________________ | 19 | |
Литература_____________________________________________________ | 27 |
Цель данной работы: рассмотреть основы теории линейных операторов и методы решения операторных уравнений – метод малого параметра и метод продолжения по параметру, показать применение этих методов к решению задач.
Изучив имеющийся материал по данной теме, я поставила перед собой следующие задачи:
... математических методов, связанных с описанием и анализом типичных явлений, протекающих именно в электротехнических устройствах. 1 Применение преобразования Лапласа и его свойств к расчету переходных процессов Этот метод основан на преобразовании Лапласа. Пусть f(t) – оригинал, а F(p) – изображение этого оригинала по Лапласу. Для сокращения применяют такие обозначения: f(t)F(p), F(p)= Прямое ...
... лишь угловую часть лапласиана и имеет вид: . (6.23) Уравнение Лежандра, встречается в нескольких фундаментальных задачах: 1) в задаче о квантовых состояниях и энергетических уровнях ротатора - линейной молекулы, свободно вращающейся вокруг центра массы. 2) в уравнении Шрёдингера для атома H и водородоподобных ионов. 6.7.3. Уравнение Лежандра это вполне типичное операторное уравнение на
... плотность тока вероятности .(1.9) Из (1.9) следует, что j = 0 для всех функций , у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций . Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно ...
... популяции обязательно вырождаются, причем независимо от начального распределения особей по возрасту. В завершение рассмотрим пример. Одной из классических моделей динамики популяций является так называемая логистическая модель или модель Ферхюльста, которая описывается дифференциальным уравнением с начальным условием , где , см., например, [5, c. 14]. Если учитывать ограниченность времени жизни ...
0 комментариев