6. Расчет маховика

Для каждого положения механизма определяем приведенный к главному валу момент сил сопротивления, определяемый из условия равенства мощности приведенного момента и мощности силы полезного сопротивления

Для каждого положения механизма определяем приведенный к главному валу момент инерции, определяемый из условия равенства кинетических энергий

;

.

Результаты всех расчетов и замеров сведены в таблицу 6.

Табл. 6

Mпр, Н∙м

Jпр, кг∙м2

ΔЕ, мм

, Дж

JMX + Jnp, кг∙м2

ω1, рад

0 0,00 0,0000 0,00 6,55 0,2214 7,69
1 2,46 0,0025 6,83 6,91 0,2239 7,86
2 3,87 0,0064 4,75 6,80 0,2278 7,73
3 4,97 0,0104 -3,52 6,37 0,2318 7,41
4 5,72 0,0128 -16,47 5,69 0,2342 6,97
5 5,96 0,0126 -31,96 4,87 0,2340 6,45
6 5,49 0,0095 -47,00 4,08 0,2309 5,95
7 3,88 0,0042 -57,42 3,54 0,2256 5,60
8 0,00 0,0000 -56,23 3,60 0,2214 5,70
9 0,0245 -42,17 4,34 0,2459 5,94
10 0,0732 -28,11 5,08 0,2946 5,87
11 0,0104 -14,06 5,81 0,2318 7,08

Строим графики Мпр и Jпр в масштабах μφ = 0,0175 рад/мм, μМ = 0,1 Н∙м/мм и μJ = 0,0008 кг∙м2/мм. Графическим интегрированием графика моментов получаем график приведенных работ (полюсное расстояние H = 30). Далее получаем график ΔЕпр(φ), его масштаб будет равен

.

Определяем минимальную и максимальную угловую скорость кривошипа

;

.

Находим углы касательных к диаграмме

;

.

Графически исключаем параметр φ и строим график ΔЕпр(J). Проводим к нему касательные под углами ψmax и ψmin. Точка пересечения касательных – новое начало координат графика.

Замеряем

JMX = 276,75∙0,0008 = 0,2214 кг∙м2;

Епр0 = 124,79∙0б0525 = 6,552 Дж.

Принимаем диаметр маховика dMX = 0,5 м, тогда вес обода будет

;

вес маховика с ободом и спицами равен GMX = 1,3∙Gоб = 1,3∙34,75 = 45,18 Н.

Угловую скорость кривошипа в каждом положении механизма находим по формуле , результаты расчета занесены в таблицу 6. График изменения угловой скорости строим в масштабе 0,1 (рад/с)/мм.

Определяем мощность двигателя по формуле

.


Список литературы

1. Артоболевский И.И. Теория механизмов. – М., Издательство "Наука", 1965. – 776 с., ил.

2. Аллилуева Л.А., Езерская С.В., Кунивер А.С., Янченко Т.А. Методические указания к выполнению курсового проекта по теории механизмов и машин. 3-е изд., стереотипное. – Ижевск, Издательство ИжГТУ, 2004. – 72 с., ил.

3. Газизова З.С., Русаева В.А., Янченко Т.А. Задания для курсового проекта по теории механизмов и машин. Насосы и двигатели внутреннего сгорания. – Ижевск, Издательство ИжГТУ, 1980. – 32 с., ил.

4. Болотовская Т.П., Болотовский И.А., Смирнов В.Э. Справочник по корригированию зубчатых колес. – М.: Машгиз, 1962. – 216 с., ил.

5. Кореняко А.С. и др. Курсовое проектировании по теории механизмов и машин. – Киев, Издательство "Вища школа", 1970. – 332 с., ил.


Информация о работе «Проектирование и исследование механизмов поршневого насоса»
Раздел: Промышленность, производство
Количество знаков с пробелами: 24859
Количество таблиц: 6
Количество изображений: 7

Похожие работы

Скачать
27373
7
6

... четвертого колеса к третьему; отношение модулей зубчатых колес первой ступени к второй. 3. Исследование качественных характеристик внешнего эвольвентного зацепления Зубчатые передачи являются наиболее распространенным видом механических передач. В зависимости от условий эксплуатации при проектировании зубчатых передач учитываются различные факторы, влияющие на повышение их прочности, ...

Скачать
22206
10
0

... под линией движения ползуна. Масштабный коэффициент длин принимаем таким же как и для планов перемещений . Максимальную ординату на графике давления принимаем равной 50 мм, тогда . Полный цикл водяного насоса совершается за 1 оборот кривошипа. Значение силы полезного сопротивления FCопределяем по формуле: . Знак «+» берется в том случае, когда сила FCнаправлена противоположно движению ползуна ...

Скачать
158228
4
0

... механизма для обеспечения эффективного перехода на различные способы транспортирования в зависимости от свойств материала и выполняемой технологической операции. Разработке методов кинематического анализа механизмов транспортирования ткани швейных машин и соответствующего этой задаче алгоритмического и программного обеспечения посвящены работы. [67],[71],[72]. В работе Ю.Ю.Щербаня и В.А.Горобца ...

Скачать
79369
1
10

... машины широко используют в качестве гидродвигателей. Гидродвигатели используются в гидроприводах палубных механизмов. 6. Элементы объёмного гидропривода: рабочие жидкости; гидроаппаратура, гидролинии и гидроёмкости, кондиционеры рабочей жидкости Объемным гидроприводом наз совокупность объем гидромашин, гидроаппаратуры и вспомогательных устройств соед. с помощью гидролиний. Предназначена для ...

0 комментариев


Наверх