РАСЧЕТНАЯ ЧАСТЬ

121377
знаков
21
таблица
38
изображений

2. РАСЧЕТНАЯ ЧАСТЬ

2.1 МАТЕРИАЛЬНЫЙ БАЛАНС


Рис. 2.1 Блок – схема материальных потоков: 1 – приготовление метаноло-воздушной смеси; 2 – контактирование; 3 – абсорбция; 4 – ректификация.

G1 – воздух;

G2 – метанол со склада;

G3 – метанол-ректификат;

G4 – спирто-воздушная смесь;

G5 – контактные газы;

G6 – вода на орошение;

G7 – абсорбционные газы;

G8 – формалин-«сырец»: формальдегид – 28,79%, метанол – 27,24%, вода – 43,97%;

G9 – метанол-ректификат: формальдегид – 97%, метанол – 0,5%, вода – 2,5% ;

G10 – формалин товарный: формальдегид – 37%, метанол – 7%, вода – 56%.

РАСЧЕТ МАТЕРИАЛЬНОГО БАЛАНСА ВСЕГО ПРОЦЕССА

Материальный баланс процесса ректификации

Исходные данные

Годовая производительность одной технологической нитки производства - 126666,6 тонн в год или 15833,33 кг/ч, годовой фонд рабочего времени – 8000 ч. Формалин товарный в расходе – 15833,33 кг/ч.

С учетом заводских данных (массовых долей) рассчитываем количество формальдегида, метанола и воды в формалине товарном в приходе:

15833,33*0,37=5858,33 кг/ч (формальдегид);

15833,33*0,07=1108,33 кг/ч (метанол);

15833,33*0,56=8866,66 кг/ч (вода).

Рассчитываем количество формальдегида, метанола и воды в формалине-«сырце» в приходе, зная заводские данные:

Производительность формальдегида в формалине-«сырце» - 5571,75 кг/ч;

Производительность формальдегида в формалине товарном - 5550,00 кг/ч;

5571,75 – 100%

5550,00 - x

x=99,6% (заводская масс. доля формальдегида).

Аналогично рассчитываем для метанола и воды:

5272,50 – 100%

1050,00 – x

x=19,92% (метанол);

8508,90 – 100%

8400,00 – x

x=98,72% (вода).

5858,33 – 99,6%

x – 100%

x=5881,86 кг/ч (производительность формальдегида в формалине-«сырце»);

1108,33 – 19,92%

 x – 100%

x=5563,92 кг/ч (производительность метанола в формалине-«сырце»);

8866,66 – 98,72%

 x – 100%

x=8981,63 кг/ч (производительность воды в формалине-«сырце»).

Формалин-«сырец» (5881,86 + 5563,92 + 8981,63) = 20427,41 кг/ч.

Производительность формальдегида в метаноле ректификате:

5881,86 - 5858,33 = 23,53 кг/ч.

Производительность метанола в метаноле ректификате:

5563,92 - 1108,33 = 4455,59 кг/ч.

Производительность воды в метаноле ректификате:

8981,63 - 8866,66 = 114,96 кг/ч.

Метанол ректификат (23,53 + 4455,59 + 114,96) = 4594,08 кг/ч.

Материальный баланс стадии ректификации в таблице 9.


Таблица 9 – Материальный баланс стадии ректификации

Приход Расход
Состав кг/ч Массовая доля, % Состав кг/ч Массовая доля,%
1 2 3 4 5 6

[G8]

1. Формалин- «сырец» в т.ч.:

-формальдегид

-метанол

-вода

20427,41

5881,86

5563,92

8981,63

100

28,79

27,24

43,97

[G10]

1. Формалин – товарный в т.ч.:

-формальдегид

-метанол

-вода

[G9]

2. Метанол – ректификат в т.ч.:

-метанол

-формальдегид

-вода

15833,33

5858,33

1108,33

8866,66

4594,08

4455,59

23,53

114,96

100

37

7

56

100

97

0,5

2,5

Итого: 20427,41 100 Итого: 20427,41 100

Обозначим массовый расход формалина – «сырца» - G8, массовый расход товарного формалина – G10, массовый расход метанола – ректификата - G9.

Материальный баланс:

GF = Gp + Gw (2.1)

GF = G8; Gp = G9; Gw = G10 (2.2)

G8xF = G9xp + G10xw (2.3)

где, GF, Gp, Gw – массовые расходы: питания, дистиллята и кубового остатка, соответственно.

xF, xp, xw – содержание формальдегида в питании, дистилляте и кубовом остатке соответственно, %.

Решим систему уравнений


 (2.4)

 

G9=P=4594,97=1,28 кг/с;

G10=W=15833,33 кг/ч=4,39 кг/с.

Товарный формалин: содержание воды - 56% , формальдегида 37% и метанола 7%.

Для дальнейших расчетов необходимо концентрации исходной смеси, дистиллята и кубового остатка выразить в мольных долях по формуле:

 (2.6)

где, a,  - концентрации исходной смеси, дистиллята и кубового остатка в массовых долях (a – низкокипящего компонента, b – высококипящего компонента); Ма, Мb – молярные массы низкокипящего и высококипящего компонентов (Мметанол = 32 кг/моль, Мформ-да = 30 кг/моль).

Метанол - низкокипящий компонент (температура кипения 64,5°С);

Формальдегид - высококипящий компонент (температура кипения 98,9°С).

,

,

.

Материальный баланс процесса абсорбции

Из заводских данных:

Количество формалина-«сырца» - 19353,15 кг/ч;

Итого процесса абсорбции – 29515,65 кг/ч;

29515,65 – 100%

19353,15 – x

x=65,59% (формалин-«сырец»)

Тогда всего в процессе абсорбции будет:

20427,41 – 65,59%

x – 100%

x=31144,09 кг/ч.

Количество выхлопных газов в расходе (31144,09-20427,41)=10716,68 кг/ч.

Тогда рассчитываем количество азота, водорода, углекислого газа, окиси углерода и воды в выхлопных газах:

10716,68 – 100%

x – 77,27%

x=8280,78 кг/ч (азот);

10716,68 – 100%

x – 16,62%

x=1781,11 кг/ч (водород);

10716,68 – 100%

x – 4,14%

x=443,67 кг/ч (углекислый газ);

10716,68 – 100%

x – 0,68%

x=72,87 кг/ч (окись углерода);

10716,68 – 100%

x – 1,29%

x=138,25 кг/ч (вода).

Производительность формалина-«сырца» берется из процесса ректификации.

Вода на орошение

Из заводских данных:

Количество воды в выхлопных газах – 97,50 кг/ч;

Количество воды в формалине-«сырце» - 8508,90 кг/ч;

Вода на орошение заводская в приходе – 5548,35 кг/ч;

97,50+8508,90=8606,4 кг/ч;

8606,4 – 100%

5548,35 – x

x=64,47% .

Количество воды на орошение в расходе:

138,25+8981,63=9119,88 кг/ч;

9119,88 – 100%

x – 64,47%

x=5879,58 кг/ч;

Контактные газы: (31144,09-5879,58)=25264,51 кг/ч.

Количество формальдегида, метанола, углекислого газа, окиси углерода, водорода и азота в контактном газе рассчитывается:

25264,51 – 100%

x – 23,24%

x=5880,86 кг/ч (формальдегид);

25264,51 – 100%

x – 22%

x=5560,91 кг/ч (метанол);

25264,51 – 100%

x – 12,76%

x = 3223,75 кг/ч (вода);

25264,51 – 100%

x – 3,19%

x=805,94 кг/ч (углекислый газ);

25264,51 – 100%

x – 0,58%

x=146,53 кг/ч (водород);

25264,51 – 100%

x – 0,33%

x=83,37 кг/ч (окись углерода);

25264,51 – 100%

 x – 37,9%

x=9575,25 кг/ч (азот).

Материальный баланс абсорбционной колонны в таблице 10.

Таблица 10 – Материальный баланс абсорбционной колонны

Приход Расход
Состав кг/ч Массовая доля, % Состав кг/ч Массовая доля, %
1 2 3 4 5 6

1. Контактные газы, в т.ч.:

-формальдегид метанол

-вода

-углекислый газ

-водород

-окись углерода

-азот

2. Вода на орошение

25264,51

5880,86

5560,91

3223,75

805,94

146,53

83,37

9575,25

5879,58

100

23,24

22

12,76

3,19

0,58

0,33

37,9

100

1. Формалин – «сырец» в т.ч.:

-формальдегид

-метанол

-вода

2. Выхлопные газы, в т.ч.:

-азот

-водород

-углекислый газ

-окись углерода

-вода

20427,41

5881,8

5563,92

8981,63

10716,68

8280,78

1781,11

443,67

72,87

138,25

100

28,79

27,24

43,97

100

77,27

16,62

4,14

0,68

1,29

Итого: 31144,09 100 Итого: 31144,09 100

Материальный баланс стадии контактирования и приготовления спирто-воздушной смеси

Контактирование

Количество контактных газов в расходе равно количеству контактных газов в приходе процесса абсорбции – 25264,51 кг/ч.

Количество контактных газов равно количеству смеси воздух-метанол - 25264,51 кг/ч.

Рассчитываем количество формальдегида, метанола, воды, азота и кислорода в приходе:

25264,51 – 100%

 x – 0,09%

x=22,74 кг/ч (формальдегид);

25264,51 – 100%

 x – 46,5%

x=11748,00 кг/ч (метанол);

25264,51 – 100%

 x – 1,76%

x=444,66 кг/ч (вода);

25264,51 – 100%

 x – 40,76%

x= 10297,81 кг/ч (азот);

25264,51 – 100%

 x – 10,89%

x=2751,31 кг/ч (кислород).

 

Спиртоиспарение

Количество смеси воздух-метанол в расходе равно количеству смеси воздух-метанол в приходе процесса контактирования – 25264,51 кг/ч.

Из заводских данных:

Итого процесса спиртоиспарения – 23967,30 кг/ч;

Количество воздуха в приходе – 11988,00 кг/ч;

Количество метанола-ректификата в приходе – 4353,15 кг/ч;

Количество метанола «свежего» в приходе – 7626,15 кг/ч;

23967,30 – 100%

11988,00 – x

x=50,02% (воздух);

23967,30 – 100%

4353,15 – x

x=18,16% (метанол-ректификат);

23967,30 – 100%

7626,15 – x

x=31,82% (метанол «свежий»).

Рассчитываем количество метанола «свежего» в приходе и входящего в него метанола и воды:

25264,51 – 100%

x – 31,82%

x=8039,17 кг/ч (метанол «свежий»);

8039,17 – 100%

x – 99,9%

x=8031,13 кг/ч (метанол);

8039,17 – 100%

x – 0,1%

x=8,04 кг/ч.

Рассчитываем количество метанола-ректификата в приходе и входящего метанола, формальдегида и вода:

25264,51 – 100%

x – 18,16%

x=4588,04 кг/ч (метанол-ректификат);

4588,04 – 100%

x – 97%

x=4450,39 кг/ч (метанол);

4588,04 – 100%

x – 0,5%

x=22,94 кг/ч (формальдегид);

4588,04 – 100%

x – 2,5%

x=114,70 кг/ч (вода).

Рассчитываем количество воздуха в приходе и входящего в него кислорода, азота и воды:

25264,51 – 100%

x – 50,02%

x=12637,31 кг/ч (воздух);

12637,31 – 100%

x – 20,7%

x=2615,92 кг/ч (кислород);

12637,31 – 100%

x – 77,5%

x=9793,91 кг/ч (азот)

12637,31 – 100%

x – 1,8%

x=227,47 кг/ч (вода).

Материальный баланс стадии контактирования и приготовления спирто – воздушной смеси в таблице 11.


Таблица 11 – Материальный баланс стадии контактирования и приготовления сприрто – воздушной смеси

Приход Расход
Состав кг/ч Массовая доля, % Состав кг/ч Массовая доля, %
Контактирование

1. Смесь воздух – метанол, в т.ч.:

формальдегид

-метанол

-вода

-азот

-кислород

25264,51

22,74

11748,00

444,66

10297,81

2751,31

100

0,09

46,5

1,76

40,76

10,89

1 Контактные газы, в т.ч.:

формальдегид

-метанол

-вода

-углекислый газ

-окись углерода

-водород

-азот

25264,51

5880,86

5560,91

3223,75

805,94

146,53

83,37

9575,25

100

23,24

22

12,76

3,19

0,33

0,58

37,9

Итого: 25264,51 100 Итого: 25264,51 100
Приход Расход
Состав кг/ч Массовая доля, % Состав кг/ч Массовая доля, %
Спиртоиспарение

Метанол «свежий» в т.ч.:

-метанол

-вода

2. Метанол – ректификат, в т.ч.:

-метанол

-формальдегид

-вода

3. Воздух, в т.ч.:

-кислород

-азот

-вода

8039,17

8031,13

8,04

4588,03

4450,39

22,94

114,70

12637,31

2615,92

9793,91

227,47

100

99,9

0,1

100

97

0,5

2,5

100

20,7

77,5

1,8

Смесь воздух – метанол, в т.ч.:

-формальдегид

-метанол

-вода

-азот

-кислород

25264,51

22,74

11748,00

444,66

10297,81

2751,31

100

0,09

46,5

1,76

40,76

10,89

Итого: 25264,51 100 Итого: 25264,51 100

Построение диаграмм

Для идеальных смесей диаграммы можно построить путем расчета, исходя из значений давлений паров чистых компонентов РН.К и РВ.К при различных температурах. Для этого можно воспользоваться уравнением:

(2.7)

Решив от относительно x, получим:

 (2.8)

Таким образом, выбрав ряд температур (в пределах между температурами кипения чистых компонентов), можно вычислить состав жидкости, кипящей при данной температуре. Далее, определив парциальное давление НК по формуле:

 (2.9)

находим состав паров:

 (2.10)

где, Робщ = 427 мм рт. ст. Давление общее соответствует давлению верха колонны.

Давление верха равно 0,057 Мпа;

Переводим в мм рт. ст.: 0,057*106Па*760 мм рт. ст. /101325 Па = 427,5 мм рт. ст.

Данные расчета сводятся в табл.12 (расчет равновесного состава жидкости и пара смеси метанол – формальдегид).

Рассчитываем давление (Рн.к) для метанола.

Данные значений давлений низкокипящего компонента (метанол) при различных температурах берем из [1, стр.26 ].

Из данных [1, стр.26 ] рассчитываем давление при известных температурах.

Интервал температур от 64,7 до 98,9°С.

При температуре 60°С давление составляет 625 мм рт. ст., а при температуре 70°С давление равно 927 мм рт. ст.

1)  Находим давление при температуре 64,7°С:

(927 – 625)/10 = 30,2 на 1°С;

(64,7 – 60)*30,2 = 142,4;

625 + 142,4 = 767,4 мм рт. ст..

2) Находим давление при температуре 68,12°С:

(68,12 – 60)*30,2 = 246,1;

625 + 246,1 = 871,1 мм рт. ст..

При температуре 70°С давление составляет 927 мм рт. ст., а при температуре 80°С давление равно 1341 мм рт. ст.

3) Находим давление при температуре 71,54°С:

(1341 – 927)/10 = 41,4 на 1°С;

(71,54 – 70)*41,4 = 64,2;

927 + 64,2 = 991,2 мм рт. ст..


4) Находим давление при температуре 74,96°С:

(74,96 – 70)*41,4 = 206,7;

927 + 206,7 = 1133,7 мм рт. ст..

5) Находим давление при температуре 78,38°С:

(78,38 – 70)*41,4 = 349,2;

927 + 349,2 = 1276,2 мм рт. ст..

При температуре 80°С давление составляет 1341 мм рт. ст., а при температуре 90°С давление равно 1897 мм рт. ст.

6) Находим давление при температуре 81,8°С:

(1847 – 1341)/10 = 55,6 на 1°С;

(81,8 – 80)*55,6 = 100;

1341 + 100 = 1441 мм рт. ст..

7) Находим давление при температуре 85,22°С:

(85,22 – 80)*55,6 = 290;

1341 + 290 = 1631 мм рт. ст..

8) Находим давление при температуре 88,64°С:

(88,64 – 80)*55,6 = 480;

1341 + 480 = 1821 мм рт. ст..


При температуре 90°С давление составляет 1897 мм рт. ст., а при температуре 100°С давление равно 2621 мм рт. ст.

9) Находим давление при температуре 92,06°С:

(2621 – 1897)/10 = 72,4 на 1°С;

(92,06 – 90)*72,4 = 147,1;

1897 + 147,1 = 2044,1 мм рт. ст..

10) Находим давление при температуре 95,48°С:

(95,48 – 90)*72,4 = 391,4;

1897 + 391,4 = 2288,4 мм рт. ст..

11) Находим давление при температуре 98,9°С:

(98,9 – 90)*72,4 = 635,7;

1897 + 635,7 = 2532,7 мм рт. ст..

Данные расчета сводятся в табл.12 (расчет равновесного состава жидкости и пара смеси метанол – формальдегид).

Рассчитываем давление (Рв.к) дла формальдегида.

Из экспериментальных данных о фазовом равновесии системы находятся константы А, В и С в уравнении Антуана, описывающего температурную зависимость давления паров некоторого гипотетического состояния формальдегида в чистом виде, но с учетом взаимодействия с водой [1, стр 35 ]. Полученное выражение имеет вид:

 (2.11)

 (2.12)

1)  Находим давление при температуре 64,7°С:

P = 70,3 мм рт. ст..

2) Находим давление при температуре 68,12°С:

P = 83,8 мм рт. ст..

3) Находим давление при температуре 71,54°С:

P =99,3 мм рт. ст..

4) Находим давление при температуре 74,96°С:

P = 117,2 мм рт. ст..

5) Находим давление при температуре 78,38°С:

P = 138 мм рт. ст..

6) Находим давление при температуре 81,8°С:

P = 161,4 мм рт. ст..

7) Находим давление при температуре 85,22°С:

P = 188,8 мм рт. ст..

8) Находим давление при температуре 88,64°С:

P = 219,3 мм рт. ст..

9) Находим давление при температуре 92,06°С:

P = 254,7 мм рт. ст..

10) Находим давление при температуре 95,48°С:

P = 293,8 мм рт. ст..

11) Находим давление при температуре 98,9°С:

P = 338,8 мм рт. ст..

Данные расчета сводятся в табл.12 (расчет равновесного состава жидкости и пара смеси метанол – формальдегид)

Далее рассчитываем состав жидкости по формуле (2.8):

Данные расчета сводятся в табл.12 (расчет равновесного состава жидкости и пара смеси метанол – формальдегид).

Находим состав паров по формуле (2.10):


Данные расчета сводятся в табл.12 (расчет равновесного состава жидкости и пара смеси метанол – формальдегид).

Таблица 12 – Расчет равновесного состава жидкости и пара смеси метанол – формальдегид

t,°C Рн.к Рв.к X Y
мм рт. ст. мольные доли
64,7 767,4 70,3 0,51 0,92
68,12 871,1 83,8 0,44 0,89
71,54 991,2 99,3 0,37 0,86
74,96 1133,7 117,2 0,31 0,82
78,38 1276,1 138 0,25 0,75
81,8 1441 161,4 0,21 0,71
85,22 1631 188,8 0,17 0,65
88,64 1821 219,3 0,13 0,55
92,06 2044,1 254,7 0,10 0,48
95,48 2288,4 293,8 0,06 0,32
98,9 2532,7 338,8 0,04 0,24

Построение кривой равновесия пара и жидкости на диаграмме X – Y показано на рис.2.2. На осях откладывается максимальная концентрация низкокипящего компонента (в данном случае метанола) в паровой yм и жидкой xм фазах (100%), строится квадрат. Через полученную точку А и начало координат О проводим вспомогательную линию – диагональ ОА. Кривую равновесия строим в заданном масштабе по xм и yм при различных температурах (см. табл. 12). На пересечении перпендикуляров, восстановленных из точек x1, y1; x2, y2; x3, y3; … …, получаем точки А1, А2, А3, … Соединяя эти точки плавной линией, получаем кривую равновесия. Если линия равновесия лежит выше диагонали, то пары обогащаются низкокипящим компонентом. Чем ближе линия равновесия к диагонали, тем меньше разница составов пара и жидкости и тем труднее разделяется смесь при ректификации.

График изменения составов жидкости и пара от температуры t – X – Y строится следующим образом (рис.2.3). В соответствии с табл. 12 отложим на оси ординат температуры кипения чистых компонентов tA и tB (А – метанол, В – формальдегид) и температуры кипения t1, t2, t3, …, соответствующие составам жидкой фазы x1, x2, x3, … Восстановим из этих точек перпендикуляры и, соединив точки А1, А2, А3, … плавной линией, получим кривую ВА1А2А3 … А – линию кипения жидкости. Затем на оси абсцисс откладываем составы паровой фазы y1, y2, y3, …, равновесной с данной кипящей жидкостью, и проводим перпендикуляры до пересечения с линиями, проведенными через t1, t2, t3, … Соединив точки пересечения В1, В2, В3, …, В плавной линией, получим кривую ВВ1В2В3 … А – линию конденсации. С помощью этого графика можно определить температуру жидкости и пара любого состава и наоборот, найти составы жидкости и пара при заданной температуре. Для определения температуры кипения исходной смеси проводим вертикаль из точки xF, соответствующей концентрации исходной смеси по низкокипящему компоненту, до пересечения с линией кипения жидкости в точке А¢. Из точки А¢ опускаем перпендикуляр на ось y и находим значение температуры кипения tF.

Таким образом tF = 76,9°С. Аналогично для дистиллята и кубового остатка: tP = 64,8°C, tW = 98,4°C.

Состав пара yF = 0,788, yP = 0,998, yW = 0,164.

Определение рабочего флегмового числа

Рабочее флегмовое число рассчитывается по формуле:

 (2.13)

Минимальному флегмовому числу Rmin соответствует положение линий рабочих концентраций АВ и ВС (рис.2.2):

 (2.14)

где, y*, x* - координаты точек пересечения линий питания с линией равновесия (yF* = 0,778, xF* = 0,27);

xp и xf – массовый состав дистиллята и исходной смеси.

Графическое определение минимального флегмового числа

На рис.2.2 проводим прямую СЕ через точку В пересечения вертикали с линией равновесия и через точку С на диагонали, соответствующую составу дистиллята xp. Измерив отрезок b0, отсекаемый прямой СЕ на оси ординат, находят Rmin из формулы:

 (2.15)

где, xp – мольный состав дистиллята;

откуда

b0 = 0,70,

Графическое определение рабочего флегмового числа Оптимальное рабочее флегмовое число R предложено находить по минимальному значению N(R+1), полагая, что это произведение пропорционально объему ректификационной колонны (N – число ступеней изменения концентрации или теоретических тарелок).

Задавшись различными коэффициентами избытка флегмы b, определим соответствующие флегмовые числа R [2, стр. 46 ]. По формуле (2.15) рассчитываем величину b; графическим построением ступеней изменения концентраций между равновесной и рабочими линиями на диаграмме Y – X находим N и далее N(R+1). Построение рабочих линий и ступеней изменения концентраций выполняется для каждого заданного коэффициента избытка флегмы и рассчитанного флегмового числа.

Вычисляем R, b, N, N(R+1) при различных значениях b:

флегмовое число вычисляем по формуле (2.13), а b0 по (2.15):


 

Чтобы определить количество тарелок, надо графически изобразить линии рабочего процесса в колонне. Колонну непрерывного действия от места ввода исходной смеси делят на две части: верхняя часть колонны называется укрепляющей, а нижняя часть – исчерпывающей. Для укрепляющей части колонны уравнение линии рабочих концентраций определяется соотношением (2.16):

,

в котором выражение R/(R+1) есть тангенс угла наклона линии, а отрезок, отсекаемый линией на оси y, определяется зависимостью b = xp/(R+1). Для построения линий рабочих концентраций укрепляющей и исчерпывающей части колонны откладываем на оси абсцисс точки А, В, С (рис 2.3), соответствующие составам кубового остатка xw, исходной смеси xf и дистиллята xp, проводим через точки А и С вертикали до пересечения с диагональю и получаем точки А1 и С1. Откладываем на оси ординат отрезок ОЕ, длина которого определяется соотношением b = xp/(R+1). Через точки С1 и Е проводим прямую С1Е, а через точку В – вертикаль до пересечения с линией С1Е и получаем точку В1. Соединяем точки А1 и В1 линией А1В1. Отрезок С1В1 – линия рабочих концентраций укрепляющей части колонны, отрезок А1В1 – линия концентраций исчерпывающей части колонны. Число теоретических тарелок находим путем построений ступенчатой линии между линией равновесия и линиями рабочих концентраций в пределах от xw до xp. Эту процедуру делаем 6 раз т. к. дано 6 значений b т.е. отрезков ОЕ.

Количество ступеней (тарелок), полученные из рис.2.3 равно: 13, 9, 8, 7, 8, 5.

Полученные значения заносим в таблицу 13.

Таблица 13

b 1,07 1,36 1,74 2,33 3,30 5,26
R 0,428 0,544 0,696 0,932 1,32 2,104
b 0,69 0,63 0,58 0,51 0,42 0,32
N 13 9 8 7 8 5
N(R+1) 18,564 13,896 13,568 13,524 18,56 15,52

Результаты вычислений и построений представлены на рис.2.4

Рис. 2.4 Определение оптимального рабочего флегмового числа

Минимальное произведение N(R+1) соответствует оптимальному рабочему флегмовому числу, Ropt = 0,932.

Определение действительного числа тарелок

Действительное число тарелок в ректификационных колоннах всегда больше теоретического числа, поскольку в реальных условиях равновесие фаз в результате контактного тепломассообмена на тарелках не достигается. Другими словами, коэффициент полезного действия тарелки всегда меньше единицы. Известно несколько методов расчета действительного числа тарелок. В данном случае мы используем графоаналитический метод, как наиболее простой и менее трудоемкий, хотя и несколько менее точный. В соответствии с этим методом действительное число тарелок определяется по уравнению:

 (2.17)

здесь h - усредненный коэффициент полезного действия тарелки для всей колонны в целом [4, стр. 65];

N – теоретическое число тарелок.

По литературным данным к. п. д. тарелки изменяется в пределах h = 0,2 ¸ 0,9. При выборе значения к. п. д. тарелки можно пользоваться обобщенным графиком [4, стр. 32] зависимости к. п. д. от произведения относительной летучести a на динамический коэффициент вязкости m (в мПа*с) перегоняемой смеси.

Относительную летучесть определяют по формуле:

 (2.18)


где, y* и x* - соответственно равновесные составы паровой и жидкой фаз на соответствующих тарелках (y*нк = 0,712, x*нк = 0,212).

y* и x* определяем из рис. 2 при средней температуре верха и низа колонны: .

Динамический коэффициент вязкости смеси определяется по формуле:

 (2.19)

где, m - динамическая вязкость веществ (метанола, формальдегида и воды) при tср, Па*с;

М – молекулярные массы веществ (метанола, формальдегида и воды);

Тср – средняя температура в К (81,6 + 273 = 354,6°С).

Рассчитываем вязкость воды и метанола при tср.= 81,6°С:

Данные взяты из справочника [5, стр. 61 ].

При температуре 80°С вязкость равна 0,657 Па*с, а при температуре 100°С вязкость равна 0,234 Па*с, определяем вязкость при 81,6°С:

(0,657 - 0,234)/20*1,6 = 0,00003384 Па*с;

0,657 – 0,00003384 = 0,66 Па*с (вода).

При температуре 80°С вязкость равна 0,29 Па*с, а при температуре 100°С вязкость равна 0,24 Па*с, определяем вязкость при 81,6°С:


(0,29 – 0,24)/20*1,6 = 0,0000064 Па*с;

0,29 – 0,0000064 = 0,29 Па*с (метанол).

Вязкость формальдегида принимаем 0,91 кг*с/м2 из [6, стр. 78].

Переводим в Па*с:

0,91 кг*с/м2 = 0,000091 кг*с/см2,


Информация о работе «Ректификация формалина-сырца»
Раздел: Промышленность, производство
Количество знаков с пробелами: 121377
Количество таблиц: 21
Количество изображений: 38

Похожие работы

Скачать
179850
35
12

... и красный уголок. Все рассмотренные помещения соединяются между собой с помощью коридоров, лестничных клеток, галерей и тамбуров. 11. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА ПРОИЗВОДСТВА ФОРМАЛИНА   Химическое производство относится к отрасли промышленности, которая представляет потенциальную опасность профессиональных заболеваний и отравлений работающих. Число отравлений и профессиональных ...

Скачать
43990
5
7

... и другом случае одинаков и может быть представлен следующей схемой: гексозы—фосфорные эфиры—гексоз-фосфотриозы—фосфоглицериновая кислота—пировиноградная кислота—уксусный альдегид—этиловый спирт. В основе производства этилового спирта из клубней картофеля лежат два биохимических процесса: ü  гидролиз (осахаривание) крахмала, содержащегося в сырье, и сбраживание образующихся сахаров в спирт ...

Скачать
68030
11
11

... смеси на четыре продукта [17]. I – IV — продукты. 2. ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ. Целью настоящей работы является определение оптимальных рабочих параметров процесса экстрактивной ректификации смеси ацетон-хлороформ азеотропного состава в сложной колонне с боковой укрепляющей секцией. К таким параметрам относятся температура и расход разделяющего агента, тарелки подачи исходной смеси и ...

Скачать
127905
1
10

... , а также при дроблении горячих слитков, разгрузке и ремонте доменных печей и т.п. 2. Методическая разработка факультативных занятий по химии На основе дипломной работы были разработаны факультативные занятия в виде лекций по теме Бризантные взрывчатые вещества для учащихся старших классов средней общеобразовательной школы. Задачи факультативных занятий: 1. Повысить познавательный ...

0 комментариев


Наверх