6.4 Определение степени защиты

Определение степени защиты борат метилфосфита в нейтральных средах определяли по ГОСТ 9.506-87 (СТ СЭВ 57733–86) гравиметрическим методом, на образцах изготовленных из стали Ст3 в виде полоски труб длинной 45 мм диаметром 20 мм и толщиной стенки 2 мм (по ГОСТ 1050–74). Заранее подготовленные образцы, отшлифованные до шероховатости 0,4 мкм, обезжиривают и взвешивают на аналитических весах.

В качестве коррозионной среды использовалась модель минерализованной пластовой воды, плотностью 1,12 г/см3, состава г/дм3:

кальций хлористый 6-водный –34,00

магний хлористый 6-водный по ГОСТ 4209-77 –17,00

натрий хлористый по ГОСТ 4233-77 –163,00

кальций сернокислый 2-водный по ГОСТ 3210-77 –0,14

Приготовленной на дистиллированной воде, используя реактивы квалификации ч.д.а.

Испытания проводили при температуре 40 оС, в течении 6 часов, в средах без ингибитора и с ингибитором концентрацией 200 мг/дм3 и 250 мг/дм3.

Результаты испытаний представим в таблице:


Таблица 6.2 – Результаты испытаний борат метилфосфита в нейтральной среде

Концентрация ингибитора,

мг/дм3

mнач,

г

mкон,

г

Скорость коррозии,

г/м2·час

Скорость коррозии средняя,

г/м2·час

Защитный эффект

%

1 --- 30,0856 30,0714 0,838 0,838 ---
2 30,1247 30,1105 0,840
3 30,0985 30,0843 0,836
1 200 30,0758 30,0754 0,021 0,022 97,3
2 30,1054 30,1050 0,022
3 30,1197 30,1193 0,023
1 250 30,1612 30,1612 0 0 100
2 30,1143 30,1143 0
3 30,1529 30,1529 0

Определение степени защиты борат метилфосфита в кислых средах определяли по ГОСТ 9.505-87 (СТ СЭВ 5296–85) гравиметрическим методом, на образцах изготовленных из стали Ст3 в виде полоски труб длинной 45 мм диаметром 20 мм и толщиной стенки 2 мм (по ГОСТ 1050–74). Заранее подготовленные образцы, отшлифованные до шероховатости 0,4 мкм, протравливают в растворе серной кислоты, обезжиривают и взвешивают на аналитических весах.

В качестве агрессивной среды использовался 1,5н раствор соляной кислоты.

Испытания проводили при температуре 40оС, в течении 60 минут, в средах без ингибитора и с ингибитором концентрацией 500 мг/дм3 и 2000 мг/дм3.

Результаты испытаний представим в таблице:


Таблица 6.3 – Результаты испытаний борат метилфосфита в кислых средах

Концентрация ингибитора,

мг/дм3

mнач,

г

mкон,

г

Скорость коррозии,

г/м2·час

Скорость коррозии средняя,

г/м2·час

Защитный эффект

%

1 --- 30,0905 29,3999 244,41 244,07 ---
2 30,1165 29,4267 243,85
3 30,1039 29,4148 243,94
1 500 30,0680 29,9639 36,66 36,61 86
2 30,1078 30,0043 36,58
3 30,1292 30,0261 36,59
1 2000 30,1712 30,1547 5,87 5,86 97,9
2 30,1133 30,0968 5,85
3 30,1607 30,1443 5,85

Исследование защитных свойств борат метилфосфита с помощью индуктивных датчиков

Как отмечалось выше, гравиметрический метод является дискретным. То есть значения скорости коррозии, полученные при использовании этого метода, являются усредненными. Ввиду этого устранение данного недостатка представляет собой нетривиальную задачу.

Решить поставленную задачу можно, путем установления функциональных зависимостей между массой образца и каким либо физическим параметром материала, который можно измерять непрерывно.

В данной работе использовалась схема дифференциального индуктивного преобразователя.

Рисунок 6.4 – Дифференциальная схема индуктивного преобразователя


Представленная схема подключения представляет собой двухплечевой мост, в котором две катушки индуктивности последовательно соединены с активными сопротивлениями. В одну из катушек вводят исследуемый образец, другую оставляют свободной.

Особенности данной схемы включения таковы, что она обеспечивает высокую чувствительность и линейную зависимость падения напряжения на катушки от ее индуктивности:

,

где U – питающее напряжение = 3 В. Z1 – сопротивление катушки с сердечником (образцом), Z0 – сопротивление катушки без сердечника (величина постоянная). Общее сопротивление катушки Z равно:

,

где R – омическое сопротивление катушки, ω – угловая частота питающего напряжения, L – индуктивность катушки. Из формулы видно, что величины ω, R – в условиях опыта есть величины постоянные. Таким образом общее сопротивление катушки зависит от ее индуктивности L.

,

где w – число витков в катушки, lк – длина катушки, μ – магнитная проницаемость образца, q – поперечное сечение катушки, lэ – эквивалентное линейное перемещение, под которой понимаем такое количество материала (массу), которое соответствует линейному перемещению на ширину одного витка. Таким образом, очевидно, что индуктивность катушки будет являться некоторой функцией от количества материала (массы) находящейся в ней или L = f(m), при условии что w, lк, q, μ – const.

И если линейные параметры катушки в действительности являются неизменными, то магнитная проницаемость системы будет меняться во времени. Ввиду того, что в процессе коррозионного разрушения, магнитная проницаемость среды будет меняться, и накладываться на общее значение индуктивности, это проблема была устранена установлением второй катушки без образца Z2, которая также находится в среде и является катушкой сравнения.

Так как при разрушении металла на его поверхности будут образовываться продукты окисления, то они также будут вносить вклад в общее значение индуктивности, но ввиду того, что магнитная проницаемость стали Ст3 на 3–4 порядка превосходит магнитную проницаемость продуктов окисления [32], то их влиянием можно пренебречь.

Таким образом, задача сводится в нахождении экспериментальной зависимости m=f(U0). Была произведена та же серия испытаний, что и для гравиметрического метода, в нейтральной и кислой средах, без ингибитора и в его присутствии согласно ГОСТ 9.506-87 и ГОСТ 9.505-86.

Полученные данные зависимости напряжения от условий опытов представлены в таблице 6.4.

Таблица 6.4 – Экспериментальные данные

Среда

Концентрация

ингибитора,

мг/дм3

mнач,

г

mкон,

г

U нач,

мВ

U кон,

мВ

Скорость коррозии,

г/м2·час

1 Нейтральная --- 30,0835 30,0693 600,0 598,8 0,836
2 30,1172 30,1030 602,7 601,5 0,839
3 30,1058 30,0916 601,7 600,6 0,836
1 200 30,0665 30,0662 598,6 598,6 0,02
2 30,1166 30,1162 602,6 602,6 0,022
3 30,1267 30,1263 603,4 603,4 0,022
1 250 30,1688 30,1688 606,8 606,8 0
2 30,1172 30,1172 602,7 602,7 0
3 30,1446 30,1446 604,8 604,8 0
1 Кислая – соляная кислота 1,5 н --- 30,0905 29,3999 599,3 576,3 244,41
2 30,1165 29,4267 601,4 578,3 243,85
3 30,1039 29,4148 600,4 577,4 243,94
1 500 30,0680 29,9639 597,5 589,3 36,66
2 30,1078 30,0043 600,7 592,5 36,58
3 30,1292 30,0261 602,4 594,2 36,59
1 2000 30,1712 30,1547 605,8 604,4 5,87
2 30,1133 30,0968 601,1 599,8 5,85
3 30,1607 30,1443 604,9 603,6 5,85

Рисунок 6.5 – Результаты эксперимента.

Из приведенного графика, очевидно, что вид зависимости между массой образца и напряжением контура, не зависит от параметров среды и хода протекания процесса. Вид данной кривой будет зависеть, только от параметров установки, температуры протекания процесса и материала из которого выполнен образец.

Рассчитанные значения масс образцов по предложенному уравнению, различаются от результатов взвешивания не более чем на пол процента.

Сопоставим результаты расчета скоростей коррозии данные представим в виде таблицы.

Таблица 6.5 – Сопоставление результатов расчета

Среда

Концентрация

ингибитора

мг/дм3

Скорость коррозии – гравиметрический метод

г/м2·час

Скорость коррозии – индуктивный датчик

Ошибка

%

Нейтральная

0 0,8370 0,8375 0,179
200 0,022 0,0198 7,183
250 0 --- ---

Кислая

0 243,3639 244,1024 0,303
500 36,5423 36,6478 0,288
2000 5,8157 5,8268 0,192

 

Из приведенных данных видно, что предложенный датчик обеспечивает высокую сходимость результатов, при скорости коррозии не ниже 0,5 г/м2·час.



Информация о работе «Увеличение степени защиты стали от коррозии в нейтральных и кислых средах»
Раздел: Химия
Количество знаков с пробелами: 82726
Количество таблиц: 24
Количество изображений: 17

Похожие работы

Скачать
46684
0
7

... составов, застойные воды и некоторые органические продукты. Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе законов Фарадея. Электрохимическая коррозия встречается чаще всего и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в ...

Скачать
43021
0
8

... и их содержимым. Способ изящен, и его применение, по-видимому, будет расширяться, как только будут преодолены сложности измерения и контроля. Покрытия, как метод защиты металлов от коррозии. Защита металлов, основанная на изменение их свойств, осуществляется или специальной обработкой их поверхности, или легированием. Обработка поверхности металла с целью уменьшения коррозии проводится одним ...

Скачать
109340
7
11

... Основным критерием, характеризующим состояние поверхности металла, является электродный потенциал. Обычно возможность применения анодной защиты для конкретного металла или сплава определяют методом снятия анодных поляризационных кривых. При этом получают следующие данные: а) потенциал коррозии металла в исследуемом растворе; б) протяженность области устойчивой пассивности; в) плотность тока в ...

Скачать
116538
3
12

... обратимых потенциалов кислородного электрода при различных рН среды и Р P (атм) V ,B, при рН среды     рН=0 рН=7 рН=14 0,21 +1,218 +0,805 +0,381 1 +1,229 +0,815 +0,400 Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой ...

0 комментариев


Наверх