2.1.1 Метод Неймана-Коппа

В этом случае используется правило сложения теплоемкостей элементов, составляющих соединение, а именно:

Cp = , (1)

где cp– теплоемкость соединения, ср,i – теплоемкость составляющего его i – го элемента (с учетом количества атомов).

Установлено, что погрешность расчета по данному методу не превышает допустимую при расчете термодинамических величин (8%) [18].


2.1.2 Методы приближенного расчета энтропии и теплот образования веществ

В соответствии с индивидуальной температурной зависимостью теплот образования веществ и их энтропий:

= + ; (2)

S0T,i = ΔS0298, i+; (3)

При наличии рассчитанных интегралов задача сводится к определению  и ΔS0298, i, для большинства соединений являющихся справочными величинами; в случае необходимости вычисления приведенных характеристик для малоизученных соединений применяют приближенные методы расчета, некоторые из которых рассмотрены ниже.

При отсутствии сведений о теплотах образования или сгорания можно вычислить теплоту образования при 298 К методом Коттрелла по энергии связей. Но, поскольку в справочных таблицах приведены усредненные значения энергии связей, без учета конкретного влияния образующихся индивидуальных связей в соединении, то результат расчета может существенно отличаться от экспериментальных данных.

Значения теплот образования могут быть рассчитаны также при использовании теплового эффекта реакции, вычисляемого из равновесных данных по уравнению Гиббса-Гельмгольца [4, 13].

Для вычисления ΔS0298, iжидких элементорганических соединений основным исходным параметром является температура плавления в виду того, что для рассматриваемого соединения определить эту величину не представляется возможной, определение энтропии производится полуэмпирическими зависимостями [4, 26].

2.2 Расчет термодинамических характеристик основной реакции

 

В данной работе предлагается использовать борат метилфосфит в качестве ингибитора коррозии в нейтральных средах, получаемого по схеме [24]:

Для расчета термодинамических параметров процесса необходимо знать зависимость теплоемкости от температуры для каждого соединения вида:

Cp = f(t) = Δa + Δb T + Δc`/T2 + ΔcT2, (4)

где a, b, c, c`- коэффициенты (табличные значения для Н3ВО3 и С2Н7РО3), а также значения H298, S298 .

Поскольку значения указанных величин для целевого продуктачастично неизвестны, рассчитаем их, используя методы, рассмотренные в разделе 2.1.1.

Получим зависимость теплоемкости от температуры, используя метод Неймана - Коппа. В этом случае используется правило сложения теплоемкостей элементов, составляющих соединение:

Cp = ,

где cp– теплоемкость соединения, ср,i – теплоемкость составляющего его i – го элемента (с учетом количества атомов).

Таблица 2.1 – Исходные данные для расчета теплоемкости борат метилфосфита

Элемент (вещество)

ср= f(T)

Литературный источник
а

b ·103

c`·10-5

Р 16,961 14,901 - [17]
C 17,17 4,27 -8,79 [16]

Н2

27,3 3,27 0,5 [17]

O2

29,98 4,2 -1,7 [16]
В 16,056 10,01 -6,28 [15]

Δa = ;

Δa =16,961·3 + 17,17·2 + 27,3·5,5 + 29,98· 5,5 + 16,056·2 = 432,375

остальные коэффициенты ряда рассчитываются аналогично:

Δb = 114,338·10-3

Δc` = –36,74·105

cp= 432,375 + 114,338·10-3·Т – 36,74·1052

Определение зависимости теплоемкости от температуры были произведены экспериментальным путем.

Чтобы сравнить значения теплоемкости, рассчитанные с помощью рассмотренного метода, и полученные экспериментально [24], представим результаты расчетов, выполненных аналогично рассмотренным, в виде таблицы, а затем построим графики зависимости теплоемкости от температуры.


Таблица 2.2 – Результаты расчета изобарной теплоемкости

Температура

Т,К

Расчет по методу

Неймана-Коппа

Ср, Дж/(моль·К)

Экспериментальное определение

Ср, Дж/(моль·К)

353 443,26 430,32
363 446,00 435,15
373 448,62 442,45
383 451,12 448,59
393 453,53 456,87
403 455,84 459,25
413 458,06 462,37
423 460,21 464,01

Рисунок 2.1 – Зависимость теплоемкости борат метилфосфита от температуры.

Как видно из графиков (рисунок 2.1) , рассчитанная по методу Неймана-Коппа теплоемкость несколько различается, однако максимальная разница между значениями не превышает допустимых 8 % [18] (для температуры 353 К, где разница максимальна, она составляет 3,1 % по отношению к меньшему значению теплоемкости).

Таким образом, доказана возможность использования вышеприведенного метода для дальнейших расчетов в рассматриваемом интервале температур.

Получим зависимости энтальпии и энтропии вида:

Согласно [11] = –4049,34 кДж/моль (вычислено по энергиям связей), таким образом, задача сводится к определению ΔS0298, i.

Как было сказано выше все эмпирические методы расчета энтропии жидких веществ не подходят для данного соединения, поэтому воспользуемся полуэмпирической зависимостью [18]:

Определим основные термодинамические параметры основной реакции. Данные для термодинамического расчета реакции синтеза представлены в таблице 2.3.


Таблица 2.3 – Термодинамические данные веществ участников реакции

Вещество

ср = f(T)

ΔН0 298,

кДж/моль

ΔS0298

Дж/К·моль
a

b ·103

c`·10-5

с·106

H3BO3

81,39 -1094,89 88,8

C2H7PO3

79,39 21,62 -19,21 -784,14 67,70

Борат

метилфосфит

432,375 114,348 -36,74 -4049,34 595,11

СН3ОН

15,29 105,269 -31,07 -79,634 57,29
Итого 92,59 470,56 20,90 -31,07 174,32 443,57

Зависимости энтальпии и энтропии реакции от температуры:

Руководствуясь ранее приведенным порядком расчета подобных зависимостей, получим:


Результаты вычислений представлены в таблице 2.4.

Таблица 2.4 – Результаты расчета термодинамических параметров

Температура,

К

,

 Дж/моль

ΔST,r,

Дж/моль·К

ΔGт, r,

Дж/моль

ln Кр

Kр

1 2 3 4 5 6
353 188751,92 487,96 16501,11 -5,62 0,0036
363 191485,71 495,60 11583,21 -3,84 0,0215
373 194255,56 503,13 6589,50 -2,12 0,1194
383 197062,08 510,55 1521,03 -0,48 0,6202
393 199905,84 517,88 -3621,21 1,11 3,0292
403 202787,32 525,12 -8836,29 2,64 13,9750
413 205706,96 532,28 -14123,34 4,11 61,1406
423 208665,15 539,35 -19481,56 5,54 254,5595

По результатам вышеприведенных расчетов построим графики соответствующих зависимостей.

Рисунок 2.2 – Зависимость энтальпии от температуры.


Рисунок 2.3 – Зависимость энтропии от температуры.

Рисунок 2.4 – Зависимость энергии Гиббса от температуры.


 

Рисунок 2.5 – Зависимость логарифма константы равновесия от температуры.

По приведенным результатам расчета термодинамических характеристик рассматриваемой реакции можно сделать следующие выводы:

1)  Так как >0, то реакция эндотермическая

2)  Энергия Гиббса становится отрицательной при температуре 385 К, следовательно, процесс термодинамически возможен, только при условие, что температура реакции больше 385 К, далее видно, что с повышением температуры, термодинамическая вероятность протекания процесса в прямом направлении линейно возрастает. На практике процесс осуществляется при 390 – 400 К.

3)  При температурах больше 385 К константа равновесия Кр >1 и далее с повышением температуры экспоненциально возрастает, тем самым равновесие смещается в сторону продуктов реакции.



Информация о работе «Увеличение степени защиты стали от коррозии в нейтральных и кислых средах»
Раздел: Химия
Количество знаков с пробелами: 82726
Количество таблиц: 24
Количество изображений: 17

Похожие работы

Скачать
46684
0
7

... составов, застойные воды и некоторые органические продукты. Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе законов Фарадея. Электрохимическая коррозия встречается чаще всего и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в ...

Скачать
43021
0
8

... и их содержимым. Способ изящен, и его применение, по-видимому, будет расширяться, как только будут преодолены сложности измерения и контроля. Покрытия, как метод защиты металлов от коррозии. Защита металлов, основанная на изменение их свойств, осуществляется или специальной обработкой их поверхности, или легированием. Обработка поверхности металла с целью уменьшения коррозии проводится одним ...

Скачать
109340
7
11

... Основным критерием, характеризующим состояние поверхности металла, является электродный потенциал. Обычно возможность применения анодной защиты для конкретного металла или сплава определяют методом снятия анодных поляризационных кривых. При этом получают следующие данные: а) потенциал коррозии металла в исследуемом растворе; б) протяженность области устойчивой пассивности; в) плотность тока в ...

Скачать
116538
3
12

... обратимых потенциалов кислородного электрода при различных рН среды и Р P (атм) V ,B, при рН среды     рН=0 рН=7 рН=14 0,21 +1,218 +0,805 +0,381 1 +1,229 +0,815 +0,400 Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой ...

0 комментариев


Наверх