Контрольная работа

Дисциплина: Высшая математика

Тема: Таблица производных. Дифференцирование сложных функций


1. Таблица производных

Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.

1. .

Найдем производную, когда .

Зададим приращение аргументу , что даст . Так как

, а , то

Отсюда  и ,

то есть . Если , результат тот же.

2. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и , то есть .

3. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и , то есть .

4. .

По определению . Будем дифференцировать  как частное:

, то есть .

5. .

По определению . Будем дифференцировать  как частное:

, то есть .

6. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и

,

то есть . Здесь была использована формула для второго замечательного предела.

7. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

8. .

Зададим приращение аргументу , что даст . Так как , а , то . Отсюда

 и , то есть .

Здесь была использована формула для одного из следствий из второго замечательного предела.

9. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

Прежде чем перейти к вычислению производных от обратных тригонометрических функций, рассмотрим вопрос о дифференцировании обратных функций вообще. Как было сказано в п. 8.2, для каждого взаимно однозначного отображения существует обратное отображение, то есть если , то .

Теорема. Если для некоторой функции  существует обратная ей , которая в точке  имеет производную не равную нулю, то в точке  функция  имеет производную  равную , то есть .

Доказательство. Рассмотрим отношение приращения функции к приращению аргумента: . Так как функция  имеет производную, то согласно теореме 11.2.2 она непрерывна, то есть , откуда . Значит, .

Воспользуемся данной теоремой для вычисления производных обратных тригонометрических функций.

10. .

В данном случае обратной функцией будет . Для нее . Отсюда

,

то есть .

11. .

Так как

, то . .

В данном случае обратной функцией будет . Для нее

.

Отсюда , то есть .

13. .

Так как

, то .



Информация о работе «Таблица производных. Дифференцирование сложных функций»
Раздел: Математика
Количество знаков с пробелами: 7446
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
7682
3
2

... Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции. Примеры 1.         2.         . Таблица производных Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x), v=v(x), С=const. Для производных основных элементарных функций будем пользоваться теоремой о ...

Скачать
149274
13
5

... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...

Скачать
30446
9
7

... функции в точке перегиба  равна нулю, то есть  = 0. Если вторая производная при переходе через некоторую точку  меняет свой знак, то  является точка перегиба ее графика. При исследовании функции и построении ее графика рекомендуется использовать следующую схему: Найти область определения функции. Исследовать функции на четность – нечетность (если функция четная или нечетная, то график ...

Скачать
29087
6
2

... дает: С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений: Производная в школьном курсе алгебры 1. Структура учебников Колмогоров: §4. Производная 12. Приращение функции 13. Понятие о производной 14. Понятия о непрерывности и предельном переходе 15. Правила вычисления производных 16. Производная ...

0 комментариев


Наверх