1. Продольное обтекание тел вращения

Для расчета внешнего осесимметричного обтекания тел вращения (см. Приложение 1) возьмем в меридианальных плоскостях (r, x) эллиптическую систему координат (x, h), связанную с (r, x) соотношениями

х = с ch x cos h, 0 £ x £ ¥,

r = с sh x sin h, 0 £ h £ 2p,

где величина c представляет расстояние фокусов семейства координатных линий – сoфокусных эллипсов и гипербол – от начала координат.

Положим

ch x = l, cos h = m, l £ l £ ¥, -1 £ m £ 1;

тогда связь между координатами (r, x) и (l, m) будет иметь вид

х = сlm, r = с Ö l2 – 1 Ö 1 – m2. (1)

Определив производные

найдем коэффициенты Ламе[1]


(2)

После этого уже нетрудно составить и основное дифференциальное уравнение Лапласа для потенциала скоростей. Согласно формуле[2]

 (*)

получим (3)

Будем искать частное решение этого уравнения в виде произведения двух функций от переменных l и m в отдельности

j = L(l) M(m); (4)

тогда в уравнении (2) переменные разделятся и из равенства

в силу независимости l и m будет следовать, что каждая из частей равенства должна быть постоянной. Полагая эту постоянную равной n (n+1), где n – целое положительное число, получим для определения L(l) и М(m) два обыкновенных линейных уравнения второго порядка лежандрова типа

(5)

Этим уравнениям удовлетворяют[3] два класса независимых решений:

1)  функции Лежандра 1-го рода – полиномы Лежандра Pn (х), определяемые равенствами

2) 

P0(x) = 1, Р1(х) = х, P2(x) = 0.5 (Зх2-1), P3(x) = 0.5 (5x3-3x),…

и рекуррентным соотношением для вычисления последующих полиномов

(n + 1) Pn +1(х) = (2n + 1) хРn(х) – nРn-1(х);

2) функции Лежандра 2-го рода Qn(х), определяемые равенствами

и рекуррентным соотношением

 

(n + 1) Qn+1(х) = (2n + 1) xQn(х) – nQn-1(х),


совпадающим с предыдущим соотношением для полиномов Лежандра.

Представим решение уравнения (3) как сумму двух потенциалов: 1) потенциала j¥ однородного потока, набегающего на тело со скоростью U¥; этот потенциал по первой из формул (1) будет равен j¥ = U¥x = U¥clm. и 2) потенциала j' скоростей возмущений, который выразим суммой частных решений (4).

Функция Pn(х), как полином n-й степени, обращается в бесконечность при бесконечно возрастающем аргументе, функция же Qn(х) при этом стремится к нулю, но зато логарифмически бесконечна при х = ± 1. В случае внешнего обтекания тела координата l = ch x может достигать бесконечных значений, а координата m ограничена. Примем во внимание, что потенциал скоростей возмущенного движения (т.е. обтекания за вычетом однородного потока со скоростью, равной скорости на бесконечности) должен стремиться к нулю при удалении от поверхности тела, причем .

Из приведенных соображений следует, что искомые частные решения должны иметь вид произведений Qn(l) Pn(m) (n = 1, 2,…);

подчеркнем, отсчет n при суммировании начинается с единицы, а не с нуля. Это подтверждается наличием следующих очевидных асимптотических равенств, справедливых при больших значениях l, а, следовательно, согласно (1), и R = = Ö х2 + r2, имеющего тот же порядок, что и l:

Таким образом, будем иметь правильный порядок убывания j' на бесконечности, если положим


, (6)

где An- постоянные коэффициенты, зависящие от формы поверхности тела.

Складывая потенциалы j¥ и j', получим искомый потенциал скоростей продольного обтекания тела вращения со скоростью на бесконечности, равной U¥,

(7)

Для определения коэффициентов An найдем выражение функции тока y. По формуле (2) будем иметь

или после подстановки разложения (7)

Переписывая второе равенство в виде


подставим под знак суммы выражение для Pn из основного дифференциального уравнения функций Лежандра (5)

Тогда будем иметь

Интегрируя по m и добавляя необходимую функцию от l, получим окончательное выражение для функции тока

(8)

Уравнение нулевой поверхности тока будет

(9)

Сравнивая его с заданным уравнением профиля тела вращения в эллиптических координатах, можно определить величины коэффициентов Аn, что и решает задачу. Конечно, именно этот пункт и является наиболее сложным с вычислительной стороны.


Имея выражение потенциала скоростей, найдем скорость по формуле (10).


Информация о работе «Продольное и поперечное обтекание тел вращения»
Раздел: Математика
Количество знаков с пробелами: 25072
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
78392
0
5

... и трещинами. Решение построено на использовании теории функции комплексного переменного и удовлетворении граничным условиям методом наименьших квадратов. 1 Термодинамические основы термоупругости   1.1 Термоупругость Основное уравнение термоупругости. При термическом расширении изотропное тело деформируется таким образом, что компоненты деформации  отнесенные к системе прямоугольных осей ...

Скачать
31272
4
10

... увеличении скорости движения транспортного средства в два раза, сила сопротивления воздуха увеличивается в четыре раза, а затраты мощности вырастают в восемь раз!!! Поэтому при движении автомобиля в городском потоке аэродинамическое сопротивление автомобиля мало, на трассе же его значение достигает больших величин. А что говорить о гоночных болидах, движущихся со скоростями 300 км/час. В таких ...

Скачать
460103
24
39

... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...

Скачать
48892
0
21

... - выдох (через нос или через рот и нос одновременно). Следует осуществлять полный выдох, который является необходимым условием для последующего полного вдоха. [1] 3. Биокинематическая схема плавания способом "кроль на спине" На рисунке 1 изображен пловец, выполняющий гребок согнутой рукой с шестью ударами ног на каждый цикл движений рук. Для определения глубины гребка рукой смотри вид сбоку. ...

0 комментариев


Наверх