В настоящей заметке доказывается следующая
Теорема 1. Пусть конечная группа является произведением разрешимой подгруппы и циклической подгруппы и пусть . Тогда , где - нормальная в подгруппа, и или для подходящего .
означает произведение всех разрешимых нормальных в подгрупп.
Следствие. Если простая группа является произведением разрешимой и циклической подгрупп, то .
Несмотря на то, что среди при нечетном нет групп факторизуемых разрешимой подгруппой и циклической, группы допускают указанную факторизацию для каждого .
Из теоремы 1 вытекает
Теорема 2. Конечная группа, являющаяся произведением 2-нильпотентной подгруппы и циклической подгруппы, непроста. Если циклический фактор имеет нечетный порядок, то группа разрешима.
Работа состоит из двух параграфов. В первом параграфе приводятся необходимые вспомогательные результаты. Кроме того, доказывается теорема 3, которая является обобщением теоремы Виландта о разрешимости внешней группы автоморфизмов простой группы, содержащей подгруппу простого индекса. В 3.2 доказываются теоремы 1 и 2.
Все обозначения и определения стандартны. Запись означает, что конечная группа является произведением своих подгрупп и .
3.1 Вспомогательные результаты
Пусть - подгруппа группы . Тогда означает наибольшую нормальную в подгруппу, которая содержится в , a - наименьшую нормальную в подгруппу, которая содержит .
Лемма 1. Если и содержит подгруппу , нормальную в , то .
Лемма 2. Пусть и - нормальная в подгруппа. Если , то .
Доказательство. Поскольку , то . Так как , то
Лемма 3 . Если и абелева, то .
Доказательство. Пусть . Ясно, что и . Если , то и . Таким образом, и .
Лемма 4 . Пусть и не делит . Тогда не сопряжен ни с одним элементом из .
Доказательство. Если , то и делит . Но по лемме VI.4.5 из, поэтому . Противоречие.
Лемма 5 . Пусть - минимальная нормальная подгруппа группы и . Если разрешима, то и изоморфна подгруппе из .
Доказательство. . Так как разрешима, то и . По лемме 1.4.5 из группа есть группа автоморфизмов .
Лемма 6 . Пусть , где - собственная подгруппа , а циклическая. Если , то справедливо одно из следующих утверждений:
1) и - нормализатор силовской 2-подгруппы, а ;
2) , а ;
3) , а .
Доказательство. См. теорему 0.8 из.
Лемма 7 . Группа при любом является произведением разрешимой подгруппы и циклической.
Доказательство. Если , то утверждение следует из леммы 6. Пусть , и - силовская -подгруппа в . Известно, что циклическая и в есть циклическая подгруппа порядка . Так как и , то .
Лемма 8 . Если , то является произведением разрешимой и циклической подгрупп.
Доказательство. Известно, что , где - циклическая группа порядка, делящего , и нормализует подгруппу , где - силовская 2-подгруппа в . Так как , где - циклическая группа порядка , то и разрешима.
Лемма 9 . Группа является произведением разрешимой подгруппы и циклической. Группа не допускает указанной факторизации.
Доказательство. Группа имеет порядок и в ней содержится подгруппа индекса 2. Так как дважды транзитивна на множестве из 13 символов, то стабилизатор точки имеет порядок и является разрешимой группой. Поэтому является произведением разрешимой подгруппы порядка и циклической подгруппы порядка 13.
Покажем, что не содержит подгруппы индекса 13. Допустим противное и пусть - подгруппа порядка . Так как дважды транзитивна на смежных классах по , то центр имеет нечетный порядок по лемме 2.2, а по лемме Берноайда , где .
Пусть - подгруппа Фиттинга группы , где . Известно, что нормализатор силовской 3-подгруппы в имеет порядок , поэтому . Так как разрешима, то и изоморфна подгруппе из .
Предположим, что . Тогда делит порядок , а значит и . Но это невозможно, так как . Противоречие.
Следовательно, . Далее , так как - подгруппа нечетного порядка, поэтому . Ясно, что , a и . Силовская 2-подгруппа из является силовской в , значит, она полудиэдральная порядка 16, все инволюции сопряжены и централизатор каждой инволюции изоморфен порядка . Поэтому . как подгруппа из полудиэдральна при , либо циклическая, либо кватернионная, либо диэдральная порядка 4 или 8. В любом случае порядок не делится на 9. Таким образом, . Противоречие. Итак, не содержит подгруппы индекса 13.
Пусть , где - разрешимая подгруппа, а - циклическая. В силовокие 13-подгруппы самоцентрализуемы, поэтому 13 делит порядок . Так как в нет - холловской подгруппы, то 3 делит порядок . Но в силовская 3-подгруппа имеет экспоненту 3, поэтому в есть подгруппа порядка . Теперь силовская 13-подгруппа из не самоцентрализуема. Противоречие. Лемма 9 доказана.
Теорема 3 . Если - простая группа, где - холловская собственная в подгруппа, а - абелева -группа, то есть расширение группы, изоморфной секции из , с помощью элементарной абелевой 2-группы. В частности, если циклическая, то есть расширение абелевой группы с помощью элементарной абелевой 2-группы.
Доказательство. Из простоты и леммы Чунихина вытекает, что и максишльна в . Представление группы перестановками на смежных классах подгруппы будет точным и дважды транзитивным, следовательно, есть подгруппа перестановок симметрической группы S степени, равной порядку . Так как - регулярная и транзитивная группа и , то также транзитивна. Но по теореме 1.6.5, поэтому самоцентрализуема в .
Группа автоморфизмов , индуцированная элементами из , называется группой подстановочных автоморфизмов. Очевидно , а по теореме 3 подгруппа нормальна в и - элементарная абелева 2-группа.
По лемме Фраттини , поэтому обозначив будем иметь . Так как , то изоморфна секции из . В частности, если циклическая, то абелева и есть расширение абелевой группы с помощью элементарной абелевой 2-группы.
... нужно самому вести рассказ вслед за ребенком, повторяя то, что он сказал, и обязательно, добавляя пропущенное. 3. Методика ознакомления с литературными произведениями детей младшего дошкольного возраста (до 3 лет) Если в задачах работы по развитию звуковой культуры речи в 1 младшей группе на первое место ставилось звукоподражание, то во 2 - эта работа над звукопроизношением с развитием ...
... результат работы(6), мы доказываем в настоящей заметке следующую теорему. Теорема Пусть конечная группа является произведением своих подгрупп и взаимно простых порядков, и пусть --- бипримарная группа, а --- 2-разложимая группа четного порядка. Предположим, что в есть неединичная циклическая силовская подгруппа . Тогда, если неразрешима, то изоморфна или . обозначает произведение ...
... , т.е. . Здесь обозначает матрицу, транспонированную к , где , а – величина, комплексно – сопряженная к . В этом параграфе мы покажем, что каждое представление конечной группы эквивалентно некоторому ее унитарному представлению и является мполне приводимым. Матрица называется эрмитовой, если , и положительно определенной, если для каждого ненулевого столбца . Следующая лемма тривиальна. ...
... тогда и только тогда, когда она разложима в произведение попарно перестановочных -подгрупп по разным простым 1.2.35 Т е о р е м а (Кегель [31] – Виландт [4]). Конечная группа, представимая в виде произведения некоторых своих попарно перестановочных нильпотентных подгрупп, разрешима. 1.2.36 Т е о р е м а. Пусть – некоторое множество простых чисел; – группа, факторизуемая подгруппами и где ...
0 комментариев