2.6 Определение ускорений точек механизма методом планов ускорений

При помощи планов ускорений можно найти ускорения любых точек механизма. Для построения планов ускорений по аналогии с планами скоростей следует пользоваться их свойствами. Свойства такие же, как и у планов скоростей, кроме третьего, где фигура, подобная одноименной жесткой фигуре на плане положений механизма, повернута на угол (180° – j¢) в сторону мгновенного ускорения e данного звена,

где . (2.21)

Поскольку полные относительные ускорения состоят из геометрической суммы тангенциальных и нормальных составляющих, то концы векторов абсолютных ускорений обозначают буквами, соответствующими названию точек.

Считая известными ускорения шарнирных точек
О = аО = 0), помещаем их на плане ускорений в полюсе рa. Звено О1А вращается равномерно, поэтому точка А имеет только нормальное ускорение , которое направлено по звену О1А к центру вращения О1 (см. рис. 2.3, в). Определяем его по формуле, м/с2 :

; . (2.22)

Принимаем (произвольно) длину отрезка , изображающего вектор ускорения  точки А, равной 180 мм. Тогда масштаб плана ускорений, м/с2×мм-1,

; . (2.23)

Из полюса плана ра откладываем  параллельно звену О1А в направлении от А к О1.

Рассматривая движения точки В со звеном АВ, составляем векторное уравнение:

, (2.24)

в котором ускорение точки А известно по значению и направлению. Определяем нормальное ускорение точки В относительно А, м/с2 ,

 ; (2.25)

 .

От точки а плана ускорений параллельно звену АВ в направлении от точки В к точке А откладываем вектор , изображающий ускорение аВАn , величина которого:


;  мм (2.26)

Через точку n1 проводим перпендикулярно звену АВ линию действия тангенциального ускорения аВАф. Из точки О2 плана ускорений параллельно звену О2В в направлении от В к О2 откладываем вектор , изображающий ускорение аВО2n, величина которого:

  мм (2.27)

Через точку n2 проводим перпендикулярно звену О2В линию действия тангенциального ускорения аВО2ф . На их пересечении получится точка В – кон

ец вектора  изображающего ускорение аВ точки В механизма, м/с2:

 . (2.28)

Определяем тангенциальные ускорения и относительные во вращении вокруг точек А и О2, м/с2:

; ;

; ;

  (2,29)

   

Положение точки С на плане ускорений находим по свойству подобия (из пропорции):

; мм. (2.30)

Соединив ее с полюсом, определяем ускорение точки С, м/с2:

 . (2.31)

Величины ускорений центров тяжести звеньев S1, S2, S3, м/с2:

 ;

 ; (2.32)

 

Определения ускорения точки D рассматриваем движения точки D со звеньями СD. Составляем векторные уравнения:

; (2.33)

Определяем нормальное ускорение точки D (ускорение точки С известно по значению и направлению), м/с2:

 . (2.34)

На плане ускорений  можно выразить:

мм (2.35)

Отложим его параллельно звену CD на плане из точки С в направлении от D к С, а затем перпендикулярно звену CD провести линию действия тангенциального ускорения до пересечения с линией хода ползуна (это будет точка D).

Определим величины ускорений точек D, , , , , м/с2:

 ;

  (2.36)

 ;

 ;

 ;

Определяем угловые ускорения звеньев.

Угловое ускорение e1 ведущего звена О1А, совершающего равномерное движение, равно нулю.

Угловое ускорение звена 2, с-2 ,

 . (2.35)

Для определения направления углового ускорения e2 звена 2 надо мысленно перенести вектор  тангенциального ускорения  в точку В. В направлении этого вектора точка В вращается относительно точки А против часовой стрелки.

По аналогии определяем значения и направления угловых ускорений звеньев 4 и 5, с-2:


;  (по часовой стрелки);

;  (по часовой стрелки). (2.36)



Информация о работе «Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи»
Раздел: Транспорт
Количество знаков с пробелами: 29792
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
46082
0
0

... А. Черкудиновым (1959 г.), отразили состояние теории современного учения о механизмах. Одновременно И. И. Артоболевский начинает исследования в области теории механизмов машин автоматического действия: гидравлических, пневматических и гидропневматических. Для современных машин характерны вибрационные явления и существенное изменение массы в процессе работы. Чтобы учесть эти факторы, в большинстве ...

Скачать
158228
4
0

... механизма для обеспечения эффективного перехода на различные способы транспортирования в зависимости от свойств материала и выполняемой технологической операции. Разработке методов кинематического анализа механизмов транспортирования ткани швейных машин и соответствующего этой задаче алгоритмического и программного обеспечения посвящены работы. [67],[71],[72]. В работе Ю.Ю.Щербаня и В.А.Горобца ...

Скачать
17902
7
0

... , если к нему приложить уравновешивающую силу и моменты. 2.8 Сравним полученные значения Рур, рассчитанные по методу плана сил и методом рычага Жуковского. Вывод: Проведя силовой анализ механизма, определили реакцию опор, нашли уравновешивающую силу, выяснили, что на данный механизм влияют силы инерции. РАЗДЕЛ III Проектирование эвольвентного зубчатого зацепления Задачами ...

Скачать
32329
8
7

... ,5 – 174,5 90 Δ, % 0,00 0,00 0,00 0,00 0,00 0,00 0,00 ПРИВЕДЁННЫЕ ФАКТОРЫ Положение 2 Расчёт ЭВМ Погрешность Δ, %  – 156,6 – 156,6 0,00 IПР 0,22 0,22 0,00 2. Синтез и анализ кулачкового механизма 2.1 Построение диаграмм движения толкателя   1. Строится заданная диаграмма ускорений толкателя. Максимальная ордината ...

0 комментариев


Наверх